БИБЛИОТЕКА НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР

БИБЛИОГРАФИЯ

 

[1]

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55: 611 - 22

[2]

Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jonak J., Lind K. et al. The real-time polymerase chain reaction. Mol Aspects Med 2006; 27: 95 - 125

[3]

Barwick V.J., Preparation of Calibration Curves: A Guide to Best Practice (2003). LGC Limited doi: 10.13140/RG.2.2.36338.76488

[4]

Dube S., Qin J., Ramakrishnan R., Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PloS One 2008; 3:e2876

[5]

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45

[6]

Stahlberg A., Rusnakova V., Forootan A., Anderova M., Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods 2013; 59: 80 - 8

[7]

Whale A.S., Huggett J.F., Cowen S., Speirs V., Shaw J., Ellison S.L. et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 2012; 40:e82

[8]

Bland J.M., Altman D.G., Transformations, means, and confidence intervals. BMJ 1996; 312: 1079

[9]

Cui X., Yu S., Tamhane A., Causey Z.L., Steg A., Danila M.I. et al. Simple regression for correcting ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР bias in RT-qPCR low-density array data normalization. BMC Genomics 2015; 16: 82

[10]

Huggett J., Dheda K., Bustin S., Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005; 6: 279 - 84

[11]

Devonshire A.S., Whale A.S., Gutteridge A., Jones G., Cowen S., Foy C.A., Huggett J.F., Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 2014; 406: 6499 - 512

[12]

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: Research 0034

[13]

Andersen C.L., Jensen J.L., Orntoft T.F., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004; 64: 5245 - 50

[14]

Pfaffl M.W., Horgan G.W., Dempfle L., Relative expression software tool [REST] for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30:e36

[15]

Mestdagh P., Van Vlierberghe P., De Weer A., Muth D., Westermann F., Speleman F., Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009; 10:R64

[16]

Livak K.J., Wills Q.F., Tipping A.J., Datta K., Mittal R., Goldson A.J. et al. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 2013; 59: 71 - 9

[17]

Bengtsson M., Stahlberg A., Rorsman P., Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 2005; 15: 1388 - 92

[18]

Nixon G., Garson J.A., Grant P., Nastouli E., Foy C.A., Huggett J.F. A comparative study of sensitivity, linearity and resistance to inhibition of digital and non-digital PCR and LAMP assays for quantification of human cytomegalovirus. Anal Chem 2014; 86: 4387 - 94

[19]

Nolan T., Hands R.E., Ogunkolade W., Bustin S.A., SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 2006; 351: 308 - 10

[20]

Betsou F., Bulla A., Cho S.Y., Clements J., Chuaqui R., Coppola D. et al. Assays for Qualification and Quality Stratification of Clinical Biospecimens Used in Research: A Technical Report from the ISBER Biospecimen Science Working Group. Biopreserv Biobank 2016; 14: 398 - 409

[21]

ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР A., ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР M., ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР J.J., Andrade M.J., Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol 2015; 1275: 31 - 56

[22]

Nolan T., Huggett J., Sanchez E. Good practice guide for the application of quantitative PCR (qPCR). doi: 10.13140/RG.2.2.15943.96162

[23]

www.ncbi.nlm.nih.gov/snp

[24]

www.ncbi.nlm.nih.gov/tools/primer-blast/

[25]

www.mirbase.org/

[26]

Ludwig N., Becker M., Schumann T., Speer T., Fehlmann T., Keller A., Meese E. Bias in recent miRBase annotations potentially associated with RNA quality issues. Sci Rep 2017; 7: 5162

[27]

Lievens A., Jacchia S., Kagkli D., Savini C., Querci M. Measuring Digital PCR Quality: Performance Parameters and Their Optimization. PloS One 2016; 11:e0153317

[28]

Devonshire A.S., Elaswarapu R., Foy C.A., Applicability of RNA standards for evaluating RT-qPCR assays and platforms. BMC Genomics 2011; 12: 118

[29]

Stahlberg A., Hakansson J., Xian X., Semb H., Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 2004; 50: 509 - 15

[30]

Sanders R., Mason D.J., Foy C.A., Huggett J.F. Evaluation of digital PCR for absolute RNA quantification. PloS One 2013; 8:e75296

[31]

Stahlberg A., Kubista M., Pfaffl M. Comparison of reverse transcriptases in gene expression analysis. Clin Chem 2004; 50: 1678 - 80

[32]

Fox B.C., Devonshire A.S., Baradez M.O., Marshall D., Foy C.A. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis. Anal Biochem 2012; 427: 178 - 86

[33]

Huggett J., Novak T., Garson J., Green C., Morris-Jones S., Miller R., Zumla A. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes 2008; 1: 70

[34]

King C., Debruyne R., Kuch M., Schwarz C., Poinar H. A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts. BioTechniques 2009; 47: 941 - 9

[35]

Stahlberg A., Aman P., Ridell B., Mostad P., Kubista M. Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clin Chem 2003; 49: 51 - 9

[36]

Sidstedt M., Romsos E.L., Hedell R., Ansell R., Steffen C.R., Vallone P.M. et al. Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases. Anal Chem 2017; 89: 1642 - 9

[37]

Weaver S., Dube S., Mir A., Qin J., Sun G., Ramakrishnan R. et al. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 2010; 50: 271 - 6

[38]

Devonshire A.S., Honeyborne I., Gutteridge A., Whale A.S., Nixon G., Wilson P. et al. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Anal Chem 2015; 87: 3706 - 13

[39]

Mojtahedi M., Fouquier d'Herouel A., Huang S. Direct elicitation of template concentration from quantification cycle (Cq) distributions in digital PCR. Nucleic Acids Res 2014; 42:e126

[40]

Wilson P.J., Ellison S.L. Extending digital PCR analysis by modelling quantification cycle data. BMC Bioinformatics 2016; 17: 421

[41]

Kline M.C., Duewer D.L. Evaluating Droplet Digital Polymerase Chain Reaction for the Quantification of Human Genomic DNA: Lifting the Traceability Fog. Anal Chem 2017; 89: 4648 - 54

[42]

Jones M., Williams J., ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР K., Phillips R., Hurst J., Frater J. Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, 'definetherain'. J Virol Methods 2014; 202: 46 - 53

[43]

Trypsteen W., Vynck M., De Neve J., Bonczkowski P., Kiselinova M., Malatinkova E. et al. ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Anal Bioanal Chem 2015; 407: 5827 - 34

[44]

Whale A.S., Huggett J.F., Tzonev S. Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif 2016; 10: 15 - 23

[45]

CLSI, Guideline EP17-A2: Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures, 2nd Edition

[46]

Hougs L., Gatto F., Goerlich O., Grohmann L., Lieske K., Mazzara M. et al. Verification of analytical methods for GMO testing when implementing interlaboratory validated methods. EUR 29015 EN, Publication Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-77310-5, doi: 10.2760/645114, JRC 109940

[47]

Forootan A., Sjoback R., Bjorkman J., Sjogreen B., Linz L., Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif 2017; 12: 1 - 6

[48]

Ellison S.L.R., Barwick V.J., Farrant T.J.D. Practical Statistics for the Analytical Scientist - A Bench Guide. 2nd ed: RSC Publishing (Cambridge), 2009

[49]

Whale A.S., Bushell C., Grant P.R., Cowen S., Guttierrez-Aguirre I., O'Sullivan D.M. et al. Detection of rare drug resistance mutations by digital PCR in a human influenza A virus model system and clinical samples. J Clin Microbiol 2016; 54: 392 - 400

[50]

Vynck M., Vandesompele J., Thas O. Quality control of digital PCR assays and platforms. Anal Bioanal Chem 2017; 409: 5919 - 31

[51]

Ellison S.L.R. In defence of the correlation coefficient. Accred Qual Assur 2006; 11: 146 - 52

[52]

Eurachem Guide, The fitness for purpose of analytical methods - A laboratory guide to method validation and related topics (second edition). 2014. ISBN 978-91-87461-59-0.

[53]

Pinheiro L.B., O'Brien H., Druce J., Do H., Kay P., Daniels M. et al. Interlaboratory Reproducibility of Droplet Digital Polymerase Chain Reaction Using a New DNA Reference Material Format. Anal Chem 2017; 89: 11243 - 51

[54]

SI Brochure: The International System of Units (SI). BIPM (Sevres, France). ISBN 978-92-822-2272-0. www.bipm.org/en/publications/si-brochure/

[55]

Yoo H.B., Park S.R., Dong L., Wang J., Sui Z., Pavsic J. et al. International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction. Anal Chem 2016; 88: 12169 - 76

[56]

Whale A.S., Jones G.M., Pavsic J., Dreo T., Redshaw N., Akyurek S. et al. Assessment of Digital PCR as a Primary Reference Measurement Procedure to Support Advances in Precision Medicine. Clin Chem 2018; 64: 1296 - 1307

[57]

Griffiths K.R., Burke D.G., Emslie K.R. Quantitative polymerase chain reaction: a framework for improving the quality of results and estimating uncertainty of measurement. Anal Methods 2011; 3: 2201 - 11

[58]

Deprez L., Corbisier P., Kortekaas A.M., Mazoua S., Beaz Hidalgo R., Trapmann S., Emons H. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomol Detect Quantif 2016; 9: 29 - 39

[59]

Jacobs B.K., Goetghebeur E., Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinformatics 2014; 15: 283

[60]

Pinheiro L.B., Coleman V.A., Hindson C.M., Herrmann J., Hindson B.J., Bhat S., Emslie K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2012; 84: 1003 - 11

[61]

Huggett J.F., Cowen S., Foy C.A. Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool. Clin Chem 2015; 61: 79 - 88

[62]

Corbisier P., Pinheiro L., Mazoua S., Kortekaas A.M., Chung P.Y., Gerganova T. et al. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Anal Bioanal Chem 2015; 407: 1831 - 40

[63]

Dong L., Meng Y., Sui Z., Wang J., Wu L., Fu B. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci Rep 2015; 5: 13174

[64]

Dagata J.A., Farkas N., Kramar J.A. Method for Measuring the Volume of Nominally ГОСТ Р ИСО 20395-2023. Национальный стандарт Российской Федерации. Биотехнология. Требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней. Количественная ПЦР и цифровая ПЦР Diameter Spherical Water-in-Oil Emulsion Droplets. NIST Special Publication 260-184 (2016) DOI: 106028/NISTSP260-184

[65]

Kosir A.B., Divieto C., Pavsic J., Pavarelli S., Dobnik D., Dreo T. et al. Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Anal Bioanal Chem 2017; 409: 6689 - 97

[66]

Whale A.S., Devonshire A.S., Karlin-Neumann G., Regan J., Javier L., Cowen S. et al. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant. Anal Chem 2017; 89: 1724 - 33

[67]

Huggett J.F., Foy C.A., Benes V., Emslie K., Garson J.A., Haynes R. et al. The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin Chem 2013; 59: 892 - 902

[68]

Wilfinger W.W., Mackey K., Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 1997; 22: 474 - 6, 8 - 81

[69]

Heitzer E., Ulz P., Geigl J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin Chem 2015; 61: 112 - 23

[70]

Cheng S., Chen Y., Monforte J.A., Higuchi R., Van Houten B. Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA. PCR Methods Appl 1995; 4: 294 - 8

[71]

Deagle B.E., Eveson J.P., Jarman S.N. Quantification of damage in DNA recovered from highly degraded samples - a case study on DNA in faeces. Front Zool 2006; 3: 11

[72]

Colotte M., Couallier V., Tuffet S., Bonnet J. Simultaneous assessment of average fragment size and amount in minute samples of degraded DNA. Anal Biochem 2009; 388: 345 - 7

[73]

Didelot A., Kotsopoulos S.K., Lupo A., Pekin D., Li X., Atochin I. et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem 2013; 59: 815 - 23

[74]

Mano J., Nishitsuji Y., Kikuchi Y., Fukudome S.I., Hayashida T., Kawakami H. et al. Quantification of DNA fragmentation in processed foods using real-time PCR. Food Chem 2017; 226: 149 - 55

[75]

Schroeder A., Mueller O., Stocker S., Salowsky R., Leiber M., Gassmann M. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006; 7: 3

[76]

Vermeulen J., De Preter K., Lefever S., Nuytens J., De Vloed F., Derveaux S. et al. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res 2011; 39:e63

[77]

Bjorkman J., Svec D., Lott E., Kubista M., Sjoback R. Differential amplicons (DeltaAmp) - a new molecular method to assess RNA integrity. Biomol Detect Quantif 2016; 6: 4 - 12

[78]

Svec D., Tichopad A., Novosadova V., Pfaffl M.W., Kubista M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 2015; 3: 9 - 16

[79]

Tichopad A., Kitchen R., Riedmaier I., Becker C., Stahlberg A., Kubista M. Design and optimization of reverse-transcription quantitative PCR experiments. Clin Chem 2009; 55:1816 - 23

[80]

Sanders R., Mason D.J., Foy C.A., Huggett J.F. Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Anal Bioanal Chem 2014; 406: 6471 - 83

[81]

ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions

[82]

ISO 13495:2013, Foodstuffs - Principles of selection and criteria of validation for varietal identification methods using specific nucleic acid

[83]

ISO 15193:2009, In vitro diagnostic medical devices - Measurement of quantities in samples of biological origin - Requirements for content and presentation of reference measurement procedures

[84]

ISO 16269-4, Statistical interpretation of data - Part 4: Detection and treatment of outliers

[85]

ISO 16577:2016, Molecular biomarker analysis - Terms and definitions

[86]

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

[87]

ISO 17511, In vitro diagnostic medical devices - Measurement of quantities in biological samples - Metrological traceability of values assigned to calibrators and control materials

[88]

ISO 20184-1, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for frozen tissue - Part 1: Isolated RNA

[89]

ISO 20184-2, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for frozen tissue - Part 2: Isolated proteins

[90]

ISO 20186-1, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for venous whole blood - Part 1: Isolated cellular RNA

[91]

ISO 20186-2, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for venous whole blood - Part 2: Isolated genomic DNA

[92]

ISO 20186-3, Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for venous whole blood - Part 3: Isolated circulating cell free DNA from plasma

[93]

ISO 21571, Foodstuffs - Methods of analysis for the detection of genetically modified organisms and derived products - Nucleic acid extraction

[94]

ISO 24276, Foodstuffs - Methods of analysis for the detection of genetically modified organisms and derived products - General requirements and definitions

[95]

ISO 25720:2009, Health informatics - Genomic Sequence Variation Markup Language (GSVML)

 

 

 

 

 

УДК 615.07:006.354

ОКС 07.080

Ключевые слова: биотехнология, требования к оценке эффективности методов количественного определения последовательностей нуклеиновых кислот-мишеней, количественная ПЦР, цифровая ПЦР

 

 

TOC