БИБЛИОТЕКА НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ Р 59921.5-2022. Национальный стандарт Российской Федерации. Системы искусственного интеллекта в клинической медицине. Часть 5. Требования к структуре и порядку применения набора данных для обучения и тестирования алгоритмов

БИБЛИОГРАФИЯ

 

[1]

IMDRF/SaMD WG/N41 - Software as a Medical Device (SaMD): Clinical Evaluation, 2017

[2]

Указ Президента Российской Федерации от 10 октября 2019 г. N 490 "О развитии искусственного интеллекта в Российской Федерации"

[3]

Willemink M.J. Preparing Medical Imaging Data for Machine Learning/M.J. Willemink, W.A. Koszek, C. Hardell. Radiology, 2020; 295(1): 4 - 15

[4]

Ranschaert E.R. Artificial Intelligence in Medical Imaging. Opportunities, Applications and Risks/E.R. Ranschaert, S.P. Morozov, R. Paul. Springer Nature Switzerland AG - 2019 - p. 705

[5]

Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data in - Premarket Notification (510(k)) Submissions. Guidance for Industry and FDA Staff

[6]

Kohli M.D. Medical Image Data and Datasets in the Era of Machine Learning - Whitepaper from the 2016 C-MIMI Meeting Dataset Session/M.D. Kohli, R.M. Summers, J. Geis // Journal of Digital Imaging. 2017; 30: 392 - 399

[7]

Morozov S.P., Gombolevskiy V.A., Elizarov A.B., et al. A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans. Computer Methods and Programs in Biomedicine. 2021. Vol. 206, P. 106111

[8]

Wilkinson M.D. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data. 2016; 3: 160018

[9]

Smith S.M., Nichols T.E. Statistical Challenges in "Big Data" Human Neuroimaging. NEUROVIEW. - Vol. 97. - No 2. - P. 263 - 268

[10]

Medical Big Data and Internet of Medical Things. Advances, Challenges and Applications/E.H. Aboul [et al.]. Taylor & Francis Group., 2019. 357 с.

[11]

Johnson, J.M. Survey on deep learning with class imbalance/J.M. Johnson, T.M. Khoshgoftaar // Journal of Big Data. 2019; 6 (27): 1 - 54

[12]

Klump J., Wyborn L., Wu M., Martin J., Downs R.R., Asmi A. Versioning Data Is About More than Revisions: A Conceptual Framework and Proposed Principles. Data Science Journal. - 2021. - V. 20. - No. 12; 1 - 13 p.

 

 

 

 

 

УДК 615.841:006.354

ОКС 11.040.01

Ключевые слова: система искусственного интеллекта, набор данных, метаданные, контроль качества