ГОСТ Р ИСО 23500-2-2021. Национальный стандарт Российской Федерации. Подготовка жидкостей для гемодиализа и сопутствующей терапии и менеджмент качества. Часть 2. Оборудование для подготовки воды для гемодиализа и сопутствующей терапии
4.2 Требования к оборудованию для водоподготовки
4.2.1 Общие положения
4.2.1.1 Система очистки воды
Поставщик питательной воды, или поставщик системы водоподготовки, или лаборатория, указанная пользователем, должны проводить химические анализы питательной воды для определения совместимости системы с питательной водой и пригодности системы для обеспечения водой для диализа, отвечающей требованиям пункта 4.1.2. Результаты химических анализов должны быть доступны пользователю, ответственному за диализ. В случае отдельного устройства лицо, включающее устройство в систему очистки воды, несет ответственность за обеспечение того, чтобы включение устройства не ставило под угрозу способность всей системы поставлять воду для диализа, способную удовлетворять требованиям пунктов 4.1.2 и 4.1.4.
Система очистки и распределения воды должна включать соответствующие манометры, расходомеры, порты отбора проб и другое вспомогательное оборудование, необходимое для контроля за работой отдельных устройств системы и системы в целом.
Клапаны могут быть включены в систему очистки воды, чтобы позволить обходить отдельные устройства при их отказе или облегчить замену устройства. Если есть возможность обойти устройство системы очистки воды, то изготовитель или установщик этого компонента должен проинформировать пользователя о рисках, связанных с обходом этого устройства, и о необходимости четкого определения ответственности за использование обхода. Однако в тех случаях, когда такие клапаны установлены, следует предусмотреть средства, позволяющие свести к минимуму вероятность того, что устройство будет непреднамеренно обойдено во время нормальной работы системы.
Рабочие органы управления должны располагаться таким образом, чтобы свести к минимуму непреднамеренный сброс.
Электрические цепи должны быть отделены от гидравлических цепей и надлежащим образом защищены от утечек жидкости.
4.2.1.2 Совместимость материалов
Материалы, контактирующие с водой для диализа (включая материалы, используемые в трубопроводах, системах хранения и распределения), не должны вступать в химическое или физическое взаимодействие с водой таким образом, чтобы отрицательно влиять на ее чистоту или качество. Контактирующие с водой поверхности должны быть изготовлены из инертных материалов (например, пластика) или соответствующей нержавеющей стали. Использование материалов, которые, как известно, вызывают токсичность при гемодиализе, таких как медь, латунь, оцинкованный металл или алюминий, строго запрещено в любой точке системы после устройства очистки воды, используемого для удаления загрязняющих ионов металлов, чаще всего системы обратного осмоса или деионизатора. Материалы любых водоочистных устройств (включая трубопроводы, системы хранения и распределения) должны быть совместимы со средствами, используемыми для дезинфекции этих устройств. Химические вещества, вводимые в воду в секции предварительной обработки, такие как хлор, кислота, флокулянты и комплексообразователи, должны быть надлежащим образом удалены из воды для диализа до того, как они достигнут какой-либо точки использования. Должны быть предусмотрены контролирующие устройства или специальные процедуры испытаний для проверки удаления добавок.
4.2.1.3 Регенерированные или восстановленные изделия
Все устройства, которые регенерируются или восстанавливаются в месте, удаленном от отделения диализа, такие как деионизаторы, должны быть продезинфицированы во время регенерации или восстановления, с тем чтобы загрязненная вода не возвращалась в систему после регенерации или восстановления. Должны использоваться отдельные процессы для обеспечения отсутствия смешивания изделий или их составных частей между изделиями, возвращенными из мест, где использовалась медицинская или питьевая вода, и изделиями, возвращенными из мест, где использовалась непитьевая вода.
4.2.1.4 Защита при дезинфекции
Если изготовитель рекомендует химические дезинфицирующие средства [см. 6.3 x)], то должны быть предусмотрены средства для восстановления оборудования и системы, в которых они используются, до безопасного состояния по остаточным дезинфицирующим средствам до использования воды для диализа для применения в диализе. При рекомендации химических дезинфицирующих средств завод-изготовитель должен также рекомендовать методы проверки остаточных уровней дезинфицирующих средств. Когда дезинфекция осуществляется автоматически химическим дезинфицирующим средством, включая озон, или высокотемпературными процедурами, активация системы дезинфекции должна приводить к активации системы предупреждения и мер по предотвращению воздействия на пациента опасного состояния.
Если гипохлорит натрия (отбеливатель) используется для очистки или дезинфекции внутренних путей оборудования для диализа, включая, но не ограничиваясь этим, контуры очистки воды, накопители для концентратов, смесители и системы подачи, то остаточный уровень свободного хлора в воде после промывки должен соответствовать требованиям инструкции изготовителя.
4.2.2 Устройство для предотвращения обратного потока
Во всех системах водоподготовки должно быть установлено устройство предотвращения обратного потока для изоляции системы водоподготовки от системы питьевого водоснабжения в соответствии с местными санитарно-техническими нормами.
4.2.3 Темперирующие клапаны
Темперирующие клапаны, если они используются, должны иметь размеры, соответствующие предполагаемому диапазону расхода горячей и холодной воды. Они должны быть снабжены механизмом предотвращения обратного потока воды в линии горячего и холодного водоснабжения и средством измерения температуры воды на выходе.
4.2.4 Осадочные фильтры
Осадочные фильтры должны иметь непрозрачный корпус или другие средства, препятствующие размножению водорослей. Фильтры должны быть снабжены манометрами на впускном и выпускном водопроводах для измерения перепада давления на фильтре.
Примечание - Осадочные фильтры также известны как мультимедийные или песчаные фильтры.
4.2.5 Картриджные фильтры
Картриджные фильтры должны иметь непрозрачный корпус или другие средства, препятствующие размножению водорослей. Фильтры должны быть снабжены манометрами на впускном и выпускном водопроводах для измерения перепада давления на фильтре.
4.2.6 Умягчители
Умягчители воды должны быть снабжены механизмом предотвращения попадания воды, содержащей высокие концентрации хлорида натрия, используемого при регенерации, в линию очищенной воды во время регенерации. Автоматическая регенерация может быть выполнена по расписанию, основанному на объеме или времени. Для умягчителей, которые регенерируются автоматически по расписанию, лицевая сторона таймеров, используемых для управления циклом регенерации, должна быть видна пользователю. Органы управления должны располагаться таким образом, чтобы свести к минимуму непреднамеренный сброс.
4.2.7 Накопитель для анионообменной смолы
Анионообменная смола, иногда называемая органическим поглотителем, может удалять органические вещества и другие загрязняющие вещества из исходной воды и защищать углеродные среды от загрязнения, что может сократить ее эффективный срок службы для удаления хлора/хлорамина. Если органический поглотитель установлен для защиты углеродных сред, то он должен быть установлен по течению выше углеродных слоев. Анионообменные смолы также могут быть использованы для удаления загрязнений, которые в противном случае могли бы загрязнить мембрану обратного осмоса.
4.2.8 Углеродные среды
Углерод используется для удаления мелких органических соединений, хлора и хлорамина. По крайней мере, один слой углерода или фильтр должны быть установлены, даже если вода подается из скважины и хлор отсутствует. Углерод удаляет органические загрязнения из грунтовых вод, включая растворители, пестициды, промышленные отходы и вещества, вытекающие из подземных накопителей. Если хлор не присутствует в воде, то углерод должен быть заменен по обычному графику. Когда углерод используется для удаления хлорамина, он должен быть специально адаптирован к максимальной ожидаемой скорости потока воды в системе и уровню хлорамина в питательной воде.
В связи с риском причинения вреда пациенту в случае полного прорыва хлора или органического загрязнения система должна быть спроектирована таким образом, чтобы предотвратить воздействие на пациента небезопасной обработанной воды в случае единичного отказа. Защитные меры могут быть включены в конструкцию системы с помощью нескольких средств, включая:
- использование двух углеродных слоев последовательно с автономным отбором проб обработанной воды из первого слоя в каждой серии (см. автономные испытания в 7.3.5 ИСО 23500-1:2019). Каждый из углеродных слоев должен иметь время контакта частиц с водой (EBCT) не менее 5 мин при максимальной скорости потока обработанной воды (общее EBCT не менее 10 мин);
- использование резервных средств удаления хлораминов с автономным отбором проб обработанной воды после первичного устройства (см. автономные испытания в 7.3.5 ИСО 23500-1:2019). Возможные альтернативы включают гранулированный слой активированного угля с последующим плотным угольным блоком или два угольных блока фильтров последовательно;
- использование углеродных систем, предназначенных для подготовки воды для портативных систем диализа, освобождается от требования для второго слоя углерода и 10-минутного EBCT, при условии наличия резервного средства удаления хлорамина с автономным отбором проб после первичного устройства (см. автономные испытания в 7.3.5 ИСО 23500-1:2019);
- использование систем управления, предназначенных для подготовки воды для портативных систем диализа, освобождается от требования для второго слоя углерода и 10-минутного EBCT, при условии наличия резервного средства удаления хлорамина с автономным отбором проб после серийного производства (см. методы испытаний хлора в 7.3.5 ИСО 23500-1:2019);
- использование углеродных сред с ограничением продолжительности или объема процесса в сочетании с контролем в режиме реального времени за обработанной водой и отводом обработанной воды для слива или блокирующим клапаном с отключением системы, если общий уровень хлора в обработанной воде превышает 0,1 мг/л (см. испытание в режиме реального времени в 7.3.5 ИСО 23500-1:2019). Периодическое испытание контролирующего устройства в режиме реального времени и частота проведения испытаний определяются инструкциями изготовителя системы. Если происходит сбой контролирующего устройства в режиме реального времени, может быть реализовано ручное испытание для контроля за хлором и хлораминами в течение 72 ч аналогично двухуглеродным конструкциям, как описано в B.2.5 ИСО 23500-1:2019.
Чтобы избежать чрезмерно больших слоев, угольные слои иногда располагаются в виде параллельных наборов, каждый набор состоит из двух последовательных слоев. Слои имеют одинаковый размер, и вода течет параллельно через каждый комплект. В этом случае каждый слой должен иметь минимальный EBCT 5 мин при максимальной скорости потока через слой. При использовании параллельных наборов слоев трубопроводы должны быть спроектированы таким образом, чтобы свести к минимуму различия в сопротивлении потоку от входа и выхода между каждым параллельным набором слоев, чтобы гарантировать, что вода течет одинаково через все слои. Должно быть предусмотрено средство для отбора проб обработанной воды из первого слоя в каждой последовательно соединенной паре, и порт для отбора проб должен быть установлен после углеродных слоев для использования в случае прорыва общего хлора через первый слой в последовательно соединенной паре.
В ситуациях, когда хлорамин не используется для дезинфекции воды, а уровень аммония [NH4+, образующийся при протонировании аммиака (NH3)] в воде низок, может быть достаточно одного углеродного слоя или угольного картриджного фильтра с более коротким EBCT. Отработанные углеродные среды выбрасываются и заменяются новыми в соответствии с графиком замены, определяемым регулярным контролем. Например, в случае двух слоев, когда испытание между слоями показывает, что первый слой исчерпан, второй слой должен быть перемещен в первое положение, второй слой заменен на новый, а исчерпанный слой удален.
Гранулированный активированный уголь с йодным числом более 900 считается оптимальным для удаления хлора/хлорамина. Однако некоторые исходные воды, такие как воды с высоким содержанием органических веществ, могут потребовать альтернативных типов углерода, которые более устойчивы к органическому загрязнению. Эти типы углерода могут иметь йодные числа менее 900. При использовании других форм углерода или гранулированного активированного угля с йодным числом менее 900 изготовитель должен представить эксплуатационные данные, свидетельствующие о том, что каждый адсорбционный слой обладает способностью снижать общую концентрацию хлора в питательной воде до менее 0,1 мг/л при работе с максимальной ожидаемой скоростью потока в течение максимального интервала времени между плановыми испытаниями обработанной воды на содержание общего хлора. Регенерированный углерод не должен использоваться. Автоматически промываемые угольные слои должны быть снабжены механизмом предотвращения попадания воды, содержащей хлор или хлорамин, в линию питательной воды нижестоящих очистных устройств, таких как обратный осмос, во время обратной промывки угольных слоев. Для углеродных слоев, которые промываются автоматически по расписанию, лицевая сторона таймеров, используемых для управления циклом обратной промывки, должна быть видна пользователю, а таймер должен быть установлен таким образом, чтобы обратная промывка происходила, когда диализ не выполняется.
В некоторых случаях активированный уголь может не обеспечивать необходимого удаления хлорамина. Недостаточное удаление хлорамина может произойти, когда pH воды высок или когда муниципальная вода содержит высокие уровни органических веществ или добавок, таких как ортофосфат, для контроля свинца и меди. Недостаточное удаление хлорамина может также происходить, когда в воде присутствуют природные N-хлорамины. N-хлорамины представляют собой относительно крупные молекулы и удаляются обратным осмосом; тем не менее они дают положительный результат в анализах, используемых для хлорамина, что создает впечатление недостаточного удаления хлорамина.
В этих условиях могут потребоваться другие методы удаления хлорамина. Один из подходов, который был успешно использован, - это введение бисульфита натрия перед системой обратного осмоса. Другие подходы включают установку анионообменной смолы перед углеродными слоями для удаления органических веществ и других загрязнений, которые могут загрязнить активированный уголь, или введение минеральной кислоты перед углеродными слоями для снижения pH щелочной питательной воды.
Если используются углеродные слои, оснащенные контролирующим устройством в режиме реального времени для измерения общего хлора в обработанной воде, то должны быть предусмотрены средства предотвращения воздействия на пациента небезопасной обработанной воды, такие как отвод обработанной воды для слива или отключение системы, если общий уровень хлора в обработанной воде превышает 0,1 мг/л; сопровождающие визуальные и/или звуковые сигналы тревоги должны соответствовать соответствующим требованиям стандарта МЭК 60601-1-8 для низкоприоритетных сигналов тревоги, если обработанная вода отводится для слива или система отключается; в противном случае сигналы тревоги должны соответствовать соответствующим требованиям стандарта МЭК 60601-1-8 для сигналов тревоги с высоким приоритетом.
Кроме того, звук, издаваемый звуковой сигнализацией, должен составлять не менее 65 дБ (шкала "A") на расстоянии 3 м, и не должно быть возможности заглушить сигнализацию более чем на 180 с. Сигнализация должна располагаться таким образом, чтобы она обеспечивала оперативное реагирование персонала в зоне ухода за пациентом.
Если контролирующее устройство в режиме реального времени помещено между двумя последовательными угольными фильтрами, сигнал тревоги с низким приоритетом может быть допустим в том случае, если ручной контроль выполняется после последнего фильтра или слоя в случае тревоги.
4.2.9 Системы впрыска химических веществ
Бисульфит натрия, вводимый в исходную воду, может быть эффективным средством снижения концентрации хлора и хлорамина. Для этой цели также использовалась аскорбиновая кислота. Кроме того, снижение pH щелочной питательной воды путем введения минеральных кислот может повысить эффективность гранулированного активированного угля. Системы впрыска химических веществ должны включать в себя средства регулирования дозирующего насоса для контроля добавления химических веществ. Эта система управления должна быть сконструирована таким образом, чтобы жестко контролировать добавление химического вещества. Система управления должна обеспечивать, чтобы химическое вещество добавлялось только тогда, когда вода проходит через каскад предварительной обработки, и чтобы оно добавлялось в фиксированной пропорции к потоку воды или на основе какого-либо постоянно контролируемого параметра, такого как pH, с использованием автоматизированной системы управления. Если для введения химического вещества используется автоматизированная система управления, то должно существовать независимое контролирующее устройство для контролируемого параметра. Контролирующие устройства должны быть сконструированы таким образом, чтобы их нельзя было отключить, пока пациент находится в зоне риска, за исключением кратких, необходимых периодов ручного управления с постоянным наблюдением оператора.
4.2.10 Обратный осмос
При использовании для подготовки воды для применения в гемодиализе, либо отдельно, либо в качестве последней ступени в каскаде очистки системы обратного осмоса эта система должна при установке удовлетворять требованиям пункта 4.1 при испытании с типичной питательной водой пользователя в соответствии с методами, описанными в пункте 5.1.
Устройства обратного осмоса должны быть оснащены контролирующими устройствами в режиме реального времени, позволяющими определять проводимость обработанной воды, и должны быть оснащены контролирующими устройствами, определяющими степень отбраковки на основе проводимости. Вместо контролирующих устройств проводимости можно использовать контролирующие устройства, отображающие сопротивление или общее количество растворенных твердых веществ (TDS). Контролирующие устройства сопротивления, проводимости или TDS должны быть термокомпенсированы, как правило, до 25 °C. Контролирующие устройства должны быть сконструированы таким образом, чтобы их нельзя было отключить, пока пациент находится в зоне риска, за исключением кратких необходимых периодов ручного управления с постоянным наблюдением оператора.
Когда система обратного осмоса является последним процессом химической очистки в системе очистки воды, она должна включать средства предотвращения воздействия на пациента небезопасной обработанной воды, такие как отвод обработанной воды для слива или отключение системы, в случае, если проводимость обработанной воды превышает заранее установленный предел. Сопутствующая звуковая сигнализация должна быть не менее 65 дБ (шкала "A") на расстоянии 3 м, и после включения она не должна отключаться более чем на 3 мин (180 с). Сигнализация должна быть установлена таким образом, чтобы обеспечить оперативное реагирование персонала в зоне ухода за пациентом.
4.2.11 Деионизация
Системы деионизации, используемые для подготовки воды для гемодиализа, должны непрерывно наблюдаться с помощью термокомпенсированного контролирующего устройства (до 25 °C) для получения воды с сопротивлением 1 МОм·см или более [или проводимостью 1 мкСм/см (0,1 мСм/м) или менее]. Используемое контролирующее устройство должно быть сконструировано таким образом, чтобы его нельзя было отключить, пока пациент находится в зоне риска, за исключением кратких необходимых периодов ручного управления с постоянным присутствием соответствующим образом обученного оператора.
Звуковая и визуальная сигнализация должна включаться, когда сопротивление обработанной воды падает ниже 1 МОм·см, и необходимо предотвратить достижение потоком обработанной воды любой точки использования путем его отвода в дренаж. Сопровождающая звуковая сигнализация должна быть не менее 65 дБ (шкала "A") на расстоянии 3 м, и после включения она не должна отключаться более чем на 3 мин (180 с). Сигнализация должна быть установлена таким образом, чтобы обеспечить оперативное реагирование персонала в зоне ухода за пациентом.
Питательная вода для систем деионизации должна быть предварительно обработана активированным углем или аналогичной альтернативой для предотвращения образования нитрозамина. Если система деионизации является последним процессом в системе очистки воды, то за ней должен следовать эндотоксиновый фильтр или другое бактериальное и эндотоксиноредуцирующее устройство.
Примечание - Приведенные выше требования к деионизации могут не применяться к технологии электродеионизации (EDI), которая может быть использована в качестве альтернативы деионизации после обратного осмоса в системах гемодиализа.
4.2.12 Бактериальные и эндотоксиновые фильтры
При использовании бактериальных и эндотоксиновых фильтров в системе очистки воды для целей гемодиализа изготовитель фильтра должен раскрыть характеристики фильтра и условия, при которых эти характеристики могут быть получены. Рекомендуется настраивать фильтры в режиме перекрестного потока. Однако можно также использовать тупиковые фильтры, имеющие проверенные характеристики удаления эндотоксинов и бактерий.
Эндотоксиновые фильтры должны иметь непрозрачный корпус или другие средства для подавления роста и размножения водорослей. Эндотоксиновые фильтры должны быть оснащены средствами оценки целостности фильтра и загрязнения, такими как контроль за перепадом давления через фильтр с помощью манометров на впускных и выпускных водопроводах.
4.2.13 Хранение и распределение воды для диализа
4.2.13.1 Системы трубопроводов
Система распределения воды для диализа не должна вносить химические вещества (такие, как алюминий, медь, свинец и цинк) или бактериальное загрязнение в обработанную воду. Системы распределения воды для диализа должны быть спроектированы таким образом, чтобы свести к минимуму размножение бактерий и образование биопленок, например, путем использования непрерывного контура рециркуляции с потоком в обратном трубопроводе. Следует избегать зон застойного течения (мертвых зон) в петлевой системе. Системы прямой подачи должны включать в себя средства проверяемого предотвращения ретроградного потока воды в распределительный контур со стороны подачи блока обратного осмоса.
4.2.13.2 Накопители для хранения
При использовании накопители для хранения должны иметь коническое или чашеобразное основание и сливаться из самой нижней точки основания. Баллонные накопители и накопители под давлением не должны использоваться в системе распределения воды для диализа. Накопители для хранения должны иметь плотно прилегающую крышку и вентилироваться через гидрофобный воздушный фильтр 0,45 мкм или менее. Смотровых трубок следует избегать из-за возможного роста водорослей и грибков. Если используется переливная трубка, то она должна быть снабжена средством предотвращения загрязнения. Должны быть предусмотрены средства для эффективной дезинфекции любого накопителя для хранения, установленного в системе распределения воды для диализа. Эндотоксиновый фильтр или какая-либо другая форма микробиологического устройства контроля должна быть установлена на расстоянии от накопителя для хранения.
4.2.13.3 Ультрафиолетовые излучатели
При использовании для контроля бактериальной пролиферации в системах хранения и распределения воды для диализа устройства ультрафиолетового (УФ) излучения должны излучать свет с длиной волны 254 нм и обеспечивать дозу излучаемой энергии 30 МВт с/см2. Если излучатель включает калиброванный измеритель интенсивности УФ-излучения, то минимальная доза излучаемой энергии должна составлять не менее 16 МВт с/см2. Устройство должно быть рассчитано на максимальный ожидаемый расход в соответствии с инструкциями изготовителя. УФ-излучатели должны сопровождаться эндотоксиновым фильтром.
УФ-излучение также может быть использовано для борьбы с бактериями в секции предварительной обработки системы водоподготовки, например, после углеродных слоев, чтобы уменьшить бактериальную нагрузку на блок обратного осмоса.
Для предотвращения использования сублетальных доз излучения, которые могут привести к развитию резистентных штаммов бактерий, УФ-излучатели должны быть оснащены калиброванным измерителем интенсивности УФ-излучения, как описано выше, или контролирующим устройством выхода излучаемой энергии в режиме реального времени, которое активирует видимый сигнал тревоги, указывающий на необходимость замены источника излучения. В качестве альтернативы источник излучения следует заменять по заранее установленному графику в соответствии с инструкциями изготовителя для поддержания рекомендуемой мощности излучения.
Если УФ-излучатели погружаются в накопитель для хранения, чтобы контролировать бактерии, они должны быть сконструированы таким образом, чтобы поддерживать необходимую энергию в самом дальнем положении в накопителе с учетом потока во время работы. Требуемая энергия зависит от того, на что направлены стерилизация или бактериостаз.
Примечание - Рекомендации, приведенные в этом пункте, касаются УФ-излучателей, используемых специально для борьбы с бактериями. УФ-излучатели также могут быть использованы для других применений в системах очистки и распределения воды. Если УФ-излучатель используется для восстановления хлора или хлорамина в качестве дополнения к углеродным средам, важно, чтобы изготовитель проверил функциональные характеристики устройства и предоставил инструкции относительно минимальной энергии излучения и длины волны для продолжения работы.
4.2.13.4 Системы дезинфекции горячей водой
При использовании для контроля распространения бактерий в системах очистки, хранения и распределения воды водонагреватель системы дезинфекции горячей водой должен обеспечивать подачу горячей воды при температуре и в течение времени воздействия, указанных изготовителем. Системы дезинфекции горячей водой должны быть оснащены системой контроля, которая показывает, если температура в точке, наиболее удаленной от водонагревателя, падает ниже рекомендованной изготовителем минимальной температуры во время цикла дезинфекции. Когда дезинфекция осуществляется автоматически с помощью высокотемпературных процедур, активация системы дезинфекции должна приводить к активации системы, указывающей на то, что дезинфекция находится в процессе. Органы управления должны быть расположены таким образом, чтобы свести к минимуму непреднамеренный сброс.
Примечание - Для контуров распределения воды для диализа точка, наиболее удаленная от водонагревателя, находится там, где вода снова поступает в накопитель для хранения (системы косвенной подачи) или где вода возвращается в систему обратного осмоса (системы прямой подачи).
4.2.13.5 Системы дезинфекции озоном
При использовании для контроля размножения бактерий в системах хранения и распределения воды для диализа система дезинфекции озоном должна обеспечивать доставку озона в концентрации и в течение времени воздействия, указанных изготовителем. Концентрация озона от 0,2 мг/л до 0,5 мг/л в сочетании с временем контакта 10 мин, измеренным в конце распределительного контура, способна убивать бактерии, бактериальные споры и вирусы в воде. После санитарной обработки остаточный уровень озона должен быть снижен до менее 0,1 мг/л.
При использовании систем дезинфекции озоном производится наблюдение за уровнем озона в окружающем воздухе в районе генератора озона для обеспечения соответствия пределам воздействия, установленным соответствующей организацией по охране труда и технике безопасности.
Активация системы дезинфекции озоном должна приводить к активации системы, указывающей, что дезинфекция находится в процессе, и к активации мер по предотвращению небезопасного воздействия на пациента. Органы управления должны располагаться таким образом, чтобы свести к минимуму непреднамеренный сброс.
