БИБЛИОТЕКА НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ Р МЭК 61078-2021. Национальный стандарт Российской Федерации. Надежность в технике. Структурная схема надежности

Введение

 

Структурная схема надежности (RBD) является наглядным представлением путей успешного функционирования системы. На этой схеме показаны логические связи функционирующих компонентов (представленных в виде блоков), необходимые для успешной работы системы (далее - "успех системы"). Следовательно, RBD эквивалентна логическому уравнению булевых переменных, а вероятностные вычисления в основном связаны с ситуацией, когда значения вероятностей успеха/отказа блоков постоянны.

Существует много различных методов анализа надежности, одним из которых является RBD. Таким образом, цель каждого метода и их индивидуального или совместного применения состоит в оценке коэффициента готовности, вероятности безотказной работы, частоты отказов и других применимых показателей надежности, которые должны быть изучены аналитиком до принятия решения об использовании RBD. Следует также рассмотреть результаты, получаемые каждым методом, данные, необходимые для выполнения анализа, сложность анализа и другие факторы, указанные в настоящем стандарте.

Если блоки RBD не зависят друг от друга и порядок, в котором происходят отказы, не имеет значения, то вычисление вероятностей может быть распространено на показатели, зависящие от времени, включая восстанавливаемые и невосстанавливаемые блоки (или компоненты). В этом случае должны быть рассмотрены три показателя, связанные с успешной работой системы: вероятность безотказной работы системы RS(t), коэффициент готовности AS(t) и частота отказов wS(t). Для систем, включающих восстанавливаемые компоненты, вычисления AS(t) и wS(t) могут быть довольно простыми, однако вычисление RS(t) подразумевает рассмотрение зависимостей в системе (см. 3.34), которые могут быть учтены в математической структуре RBD. Тем не менее в отдельных случаях доступна аппроксимация RS(t).

Метод RBD связан с анализом дерева отказов [1] и с марковскими методами [2]:

Базовая математика одинакова для RBD и анализа дерева отказов (FTA): RBD ориентирована на успех системы, FT - на отказ системы. Всегда можно преобразовать RBD в FT и наоборот. С математической точки зрения модели RBD и FT представляют собой две стороны одного и того же логического выражения. Поэтому математические разработки и ограничения для обоих методов одинаковы.

Если коэффициент готовности Ai(t) одного блока может быть рассчитан с использованием отдельного марковского процесса [2], независимо от других блоков, Ai(t) может быть использован в качестве входных данных для расчетов, связанных с RBD, включая этот блок. Подход, в котором RBD обеспечивает логическую структуру, а марковские процессы обрабатывают вычисления значений коэффициентов готовности блоков, называется подходом "RBD-управляемых марковских процессов".

Для систем, в которых необходимо учитывать порядок возникновения отказов, или когда ремонтируемые блоки не являются независимыми друг от друга, или если вероятность безотказной работы системы RS(t) не может быть рассчитана аналитическими методами, применимо моделирование Монте-Карло или другие методы моделирования, такие как динамические RBD, методы Маркова [2] или сети Петри [3].