ГОСТ Р 58771-2019. Национальный стандарт Российской Федерации. Менеджмент риска. Технологии оценки риска
Б.7 Технологии выбора между вариантами
Б.7.1 Общие положения
Технологии в этой группе используются для того, чтобы помочь лицам, принимающим решения, выбирать между вариантами, которые связаны с несколькими рисками, и в рамках которых должны быть приняты допущения. Технологии помогают обеспечить логическую основу для обоснования причин принятия решения. Поскольку технологии имеют разную философию, может быть полезно изучить варианты, используя несколько технологий.
Анализ дерева решений и анализ затрат и выгод основаны на ожидаемых финансовых убытках или выгодах. Многокритериальный анализ позволяет оценивать различные критерии и допущения. Сценарный анализ (см. Б.2.5) также можно использовать для изучения возможных последствий, если доступны различные опции. Этот метод особенно полезен там, где существует высокая степень неопределенности. Проблемы, связанные с принятием решений, также могут быть смоделированы с использованием диаграмм влияния (см. Б.5.3).
Б.7.2 Анализ затрат и выгод (CBA)
Б.7.2.1 Обзор
Анализ затрат и выгод (Cost and Benefit Analysis, CBA) позволяет взвесить общую ожидаемую стоимость изменений в денежном выражении против их общих ожидаемых выгод, чтобы выбрать наиболее эффективный или наиболее выгодный вариант. Он может быть качественным или количественным или включать комбинацию количественных и качественных элементов и может применяться на любом уровне организации.
Причастные стороны, которые могут испытывать издержки или получать выгоды (материальные или нематериальные), идентифицируются вместе с прямыми и косвенными выгодами и издержками для каждого.
Примечание - Прямые затраты - это те, которые непосредственно связаны с действием. Косвенные издержки - это дополнительные издержки, такие как потеря полезности, отвлечение управленческого времени или отток капитала от других потенциальных инвестиций.
В количественном CBA денежная стоимость присваивается всем материальным и нематериальным издержкам и выгодам. Часто случается так, что стоимость возникает в течение короткого периода времени (например, год), а поток выгод в течение длительного периода времени. Затем необходимо учесть затраты и выгоды, чтобы привести их в "сегодняшние деньги", чтобы можно было провести сравнение между затратами и выгодами. Текущая стоимость всех затрат (PVC) и текущая стоимость выгод (PVB) для всех причастных сторон могут быть объединены для получения чистой текущей стоимости (NPV): NPV = PVB - PVC.
Положительный NPV подразумевает, что инвестиции являются целесообразными. Опция с наивысшим NPV не обязательно является опцией наилучшего значения. Наибольшее соотношение NPV к текущей стоимости затрат является полезным показателем оптимальной стоимости. Выбор, основанный на PVC, должен сочетаться со стратегическим выбором между удовлетворительными вариантами, которые могут индивидуально предлагать наиболее низкую стоимость обработки, самую высокую доступную выгоду или наилучшую ценность (наиболее доходный возврат от инвестиций). Такой стратегический выбор может потребоваться как на управленческом, так и на оперативном уровне.
Неопределенность в издержках и выгодах может быть учтена путем вычисления средневзвешенной по вероятности чистой прибыли (ожидаемая чистая приведенная стоимость или ENPV). В этом расчете пользователь считается нечувствительным к небольшому выигрышу с высокой вероятностью возникновения и большому выигрышу с низкой вероятностью возникновения, если они оба имеют одинаковое ожидаемое значение. Расчеты NPV также могут быть объединены с деревьями решений (см. Б.7.3) для моделирования неопределенности в будущих решениях и их результатах. В некоторых ситуациях можно отложить часть затрат до получения более подробной информации о затратах и выгодах. Возможность это сделать имеет ценность, которая может быть оценена с использованием метода анализа реальных опционов.
В качественном CBA не предпринимаются попытки найти денежную оценку нематериальных затрат и выгод и вместо того, чтобы предоставлять единый показатель, обобщающий затраты и выгоды, отношения и компромиссы между различными издержками и выгодами рассматриваются качественно.
Связанный с этим метод - это анализ экономической эффективности. Это предполагает, что требуется определенная выгода или результат, и есть несколько альтернативных способов ее достижения. Анализ касается только затрат и стремится определить самый дешевый способ достижения прибыли.
Хотя нематериальные ценности обычно рассматриваются через денежную оценку, также можно применить весовой коэффициент к другим издержкам, например, повысить весовые преимущества в плане безопасности, вместо расчета финансовой выгоды.
Б.7.2.2 Использование
CBA используется на оперативном и стратегическом уровнях, чтобы помочь решить варианты. В большинстве случаев эти варианты будут включать неопределенность. В расчетах должны учитываться как изменчивость ожидаемой текущей стоимости затрат, так и выгоды, а также возможность неожиданных событий. Для этого можно использовать анализ чувствительности или анализ методом Монте-Карло (Б.5.10).
CBA может также использоваться при принятии решений о рисках и их обработке, например:
- в качестве вклада в решение о том, следует ли рассматривать риск;
- принять решение о наилучшей форме обработки риска;
- сравнить долгосрочные и краткосрочные варианты обработки риска.
Б.7.2.3 Входы
Входы включают информацию о затратах и выгодах для соответствующих причастных сторон и неопределенности в отношении этих издержек и выгод. Следует учитывать материальные и нематериальные затраты и выгоды.
Затраты включают любые ресурсы, которые могут быть израсходованы, включая прямые и косвенные затраты, связанные с ними накладные расходы и негативные последствия. Выгоды включают положительное воздействие и предотвращение издержек (которые могут возникнуть в результате обработки риска). Понесенные затраты уже не являются частью анализа. Простой анализ электронных таблиц или качественное обсуждение не требуют значительных усилий, но применение метода к более сложным проблемам требует значительного времени на сбор необходимых данных и оценку подходящей денежной стоимости для нематериальных активов.
Б.7.2.4 Выход
Результатом анализа затрат и результатов является информация об относительных затратах и преимуществах различных вариантов или действий. Это может быть выражено количественно как чистая приведенная стоимость (NPV), лучшее соотношение (NPV/PVC) или как отношение текущей стоимости выгод к приведенной стоимости затрат.
Качественный выпуск обычно представляет собой таблицу, сравнивающую затраты и выгоды от различных видов затрат и выгод, с привлечением внимания к компромиссам.
Б.7.2.5 Сильные стороны и ограничения
Сильные стороны CBA включают:
- CBA позволяет сравнивать затраты и выгоды с использованием единой метрики (деньги);
- обеспечивает прозрачность информации, используемой для принятия решений;
- он поощряет сбор подробной информации по всем возможным аспектам решения (это может быть полезно для выявления невежества, а также для передачи знаний).
Ограничения включают:
- CBA требует хорошего понимания вероятных преимуществ, поэтому он не подходит к новой ситуации с высокой степенью неопределенности;
- количественный CBA может привести к совершенно разным цифрам в зависимости от предположений и методов, используемых для присвоения экономических ценностей неэкономическим и нематериальным выгодам;
- в некоторых приложениях трудно определить действительную ставку дисконтирования для будущих затрат и выгод;
- трудно оценить выгоды, которые приносит большое население, особенно те, которые относятся к общественному благу, которое не обменивается на рынках. Однако в сочетании с "готовностью платить или принимать" можно учитывать такие внешние или социальные выгоды;
- в зависимости от выбранной ставки дисконтирования практика дисконтирования существующих ценностей означает, что выгоды, получаемые в долгосрочном будущем, могут иметь незначительное влияние на решение, что препятствует долгосрочным инвестициям.
CBA не справляется с неопределенностью в отношении того, когда будут возникать издержки и выгоды, или с гибкостью в принятии будущих решений.
Б.7.3 Анализ дерева решений
Б.7.3.1 Обзор
Дерево решений моделирует возможные пути, которые следуют из первоначального решения, которое необходимо принять (например, следует ли выполнять проект А или проект В). По мере продолжения двух гипотетических проектов может возникнуть целый ряд событий и должны быть приняты различные предсказуемые решения. Они представлены в древовидном формате, аналогично дереву событий. Вероятность событий можно оценить вместе с ожидаемым значением или полезностью конечного результата каждого пути.
Информация о наилучшем пути решения логически такова, что дает наивысшее ожидаемое значение, рассчитанное как произведение всех условных вероятностей вдоль пути и значения результата.
Б.7.3.2 Использование
Дерево решений может использоваться для структурирования и решения последовательных проблем принятия решений и особенно полезно, когда сложность проблемы возрастает. Это позволяет организации количественно оценивать возможные результаты решений и, следовательно, помогает лицам, принимающим решения, выбирать наилучший курс действий, когда результаты являются неопределенными. Графическая визуализация также может помочь объяснить причины принятия решений.
Она используется для оценки предлагаемого решения, часто используя субъективные оценки вероятностей событий и помогает лицам, принимающим решения, преодолевать присущие восприятию склонности к успеху или неудаче. Он может использоваться на краткосрочных, среднесрочных и долгосрочных проблемах на оперативном или стратегическом уровне.
Б.7.3.3 Вход
Для разработки дерева решений требуется план проекта с точками принятия решений, информация о возможных результатах решений и случайных событиях, которые могут повлиять на решения. Для правильного создания дерева необходима экспертиза, особенно в сложных ситуациях.
В зависимости от конструкции дерева необходимы количественные данные или достаточная информация для обоснования мнения экспертов относительно вероятностей.
Б.7.3.4 Выходы
Выходы включают:
- графическое представление решения проблемы;
- расчет ожидаемого значения для каждого возможного пути;
- приоритетный список возможных результатов на основе ожидаемого значения или рекомендуемый путь.
Б.7.3.5 Сильные стороны и ограничения
Сильные стороны анализа дерева решений:
- он обеспечивает четкое графическое представление деталей решения проблемы;
- осуществление разработки дерева может привести к улучшению понимания проблемы;
- он поощряет четкое мышление и планирование;
- он позволяет вычислять наилучший путь через ситуацию и ожидаемый результат.
Ограничения:
- большие деревья решений могут стать слишком сложными для простого общения;
- может возникнуть тенденция к упрощению ситуации, чтобы иметь возможность представлять ее как древовидную диаграмму;
- опирается на исторические данные, которые могут не применяться к моделируемому решению.
Б.7.4 Теория игр
Б.7.4.1 Обзор
Теория игр - это средство моделирования последствий различных возможных решений с учетом ряда возможных будущих ситуаций. Будущие ситуации могут определяться другим лицом, принимающим решения (например, конкурентом) или внешним событием, таким как успех или отказ технологии или теста. Например, предположим, что задача заключается в определении цены продукта с учетом различных решений, которые могут быть приняты различными лицами, принимающими решения (называемыми игроками) в разное время. Платеж для каждого игрока, участвующего в игре, относящийся к соответствующему периоду времени, может быть рассчитан, как и стратегия, с оптимальным выигрышем для каждого выбранного игрока. Теория игр также может использоваться для определения ценности информации о другом игроке или различных возможных результатах (например, успеха технологии).
Существуют различные типы игр, например совместная/несовместная, симметричная/асимметричная, нулевая сумма/ненулевая сумма, одновременная/последовательная, совершенная информация и несовершенная информация, комбинаторные игры, стохастические результаты.
Б.7.4.1.1 Общение и совместные/несовместные игры
Важным фактором является то, возможно или нет общение между игроками. Игра является совместной, если игроки могут сформировать общие обязательства. В несовместных играх это невозможно. Гибридные игры содержат совместные и несовместные элементы. Например, коалиции игроков формируются в совместной игре, но они играют несовместно.
Классическим примером игр без общения между игроками является так называемая "дилемма заключенных". Это показывает, что в некоторых случаях действие каждого игрока для улучшения собственного результата без учета другого может привести к худшей ситуации для обоих. Такая игра использовалась для анализа конфликтов и сотрудничества между двумя игроками, где отсутствие связи может привести к нестабильной ситуации, которая может привести к худшему возможному результату для обоих игроков. В "игре дилеммы заключенных" предполагается, что два человека вместе совершили преступление. Они содержатся отдельно и не могут общаться. Полиция предлагает сделку. Если каждый заключенный будет признавать свою вину и свидетельствовать против другого, он получит мягкий приговор, а другой заключенный получит более тяжелый приговор. Заключенный получает максимальный штраф, если он не признается и не свидетельствует, а другой это делает. Поэтому, чтобы улучшить их ситуацию, у обоих появляется искушение признаться и свидетельствовать против другого, но в этом случае они оба получат максимальный штраф. Их лучшая стратегия заключалась бы в том, чтобы отклонить сделку и не признать ничего. В этом случае оба получат минимальный штраф.
Б.7.4.1.2 Игры с нулевой суммой/без нулевой суммы и симметричные/асимметричные
В игре с нулевой суммой то, что один игрок получает, другой игрок проигрывает. В игре с ненулевой суммой сумма результатов может варьироваться в зависимости от решений. Например, снижение цен может стоить одному игроку больше, чем другому, но может увеличить объем рынка для обоих.
Б.7.4.1.3 Одновременные/последовательные игры
В некоторых играх расчет производится только для одного взаимодействия между игроками. Но в последовательных играх игроки много раз взаимодействуют и могут менять свою стратегию из одной игры в другую.
Например, имитируемые игры были предприняты для исследования влияния обмана на рынке. Для каждого игрока есть две возможности. Поставщик может доставить или не доставить, и клиент может оплатить или не оплатить. Из 4 возможных результатов нормальный результат дает преимущество обоим игрокам (поставщик поставляет и клиент платит). Результат, когда поставщик не доставляет, а клиент не платит, является упущенной возможностью. Последние две возможности - это потеря для поставщика (клиент не платит) или для клиента (поставщик не доставляет). Моделировали разные стратегии, такие как всегда играть честно, всегда обманывать или обманывать наугад. Было установлено, что оптимальная стратегия заключалась в том, чтобы играть честно в первом взаимодействии и в следующий раз делать то, что сделал другой игрок в прошлый раз (играть честно или обманывать). В реальной жизни, скорее всего, поставщик узнает клиентов, которые обманывают, и перестанет играть с ними.
Б.7.4.2 Использование
Теория игр позволяет оценивать риск в тех случаях, когда результат ряда решений зависит от действия другого игрока (например, участника) или от ряда возможных результатов (например, будет ли новая технология работать). Следующий пример иллюстрирует информацию, которая может быть достигнута путем анализа игры.
В таблице Б.6 показана ситуация, когда компания может выбирать между тремя различными технологиями. Но прибыль будет зависеть от действия конкурента (действие 1, 2 или 3). Неизвестно, какое действие выберет конкурент, но вероятности оцениваются, как показано. Прибыль в миллионах денежных единиц (MU) рассчитывается в таблице.
Таблица Б.6
Пример игровой матрицы
| Конкурент | Ожидаемая прибыль | Гарантированная прибыль | Максимальные потери | ||
Действие 1 | Действие 2 | Действие 3 | ||||
Вероятность | 0,4 | 0,5 | 0,1 |
|
|
|
Технология 1 | 0,10 | 0,50 | 0,90 | 0,38 | 0,10 | 0,50 |
Технология 2 | 0,50 | 0,50 | 0,50 | 0,50 | 0,50 | 0,40 |
Технология 3 | 0,60 | 0,60 | 0,30 | 0,57 | 0,30 | 0,60 |
Из таблицы может быть получена следующая информация для поддержки решения.
Очевидно, что технология 3 является лучшей, с ожидаемой прибылью 0,57 млн. денежных единиц. Но следует учитывать чувствительность к действию конкурента. В столбце с гарантированной прибылью указывается, какая прибыль будет для данной технологии, независимо от того, что делает конкурент. Здесь технология 2 является лучшей с гарантированной прибылью 0,50 млн. денежных единиц. Следует учитывать, стоит ли выбирать технологию 3, чтобы получить только 0,07 млн. денежных единиц, рискуя потерять 0,20 млн. денежных единиц.
Кроме того, можно вычислить максимальное упущение, которое представляет собой разницу между прибылью от выбора данной технологии по сравнению с возможной прибылью, если бы действие конкурента было известно. Это дает денежную выгоду от повышения осведомленности о решении конкурента. Это может быть достигнуто путем переговоров или другими законными средствами. В этом примере ценность увеличения информации является самой большой для технологии 3.
Б.7.4.3 Входы
Чтобы быть полностью определенным, игра должна указывать по крайней мере следующие элементы в качестве входных данных:
- игроки или альтернативы игры;
- информация и действия, доступные каждому игроку в каждой точке принятия решения.
Б.7.4.4 Выход
Результат - это выигрыш для каждого варианта игры, обычно используемый для представления полезности отдельных игроков. Часто в ситуациях моделирования выигрыши представляют собой деньги, но возможны другие результаты (например, доля рынка или задержка проекта).
Б.7.4.5 Сильные стороны и ограничения
Сильные стороны метода теории игр:
- он разрабатывает структуру для анализа принятия решений, где возможны несколько возможных решений, но где результат зависит от решения другого игрока или результата будущего события;
- он разрабатывает структуру для анализа принятия решений в ситуациях, когда учитывается взаимозависимость решений, принимаемых различными организациями;
- он дает представление о нескольких менее известных понятиях, которые возникают в ситуациях конфликта интересов; например он описывает и объясняет явления торга и коалиции;
- по крайней мере в играх с нулевой суммой в двух организациях теория игр описывает научный количественный метод, который может использоваться игроками для достижения оптимальной стратегии.
Ограничения:
- предположение о том, что игроки имеют знания об их собственных выплатах и действиях и окупаемости других, может оказаться непрактичным;
- методы решения игр с участием смешанных стратегий (особенно в случае большой матрицы погашения) очень сложны;
- не все конкурентные проблемы могут быть проанализированы с помощью теории игр.
Б.7.5 Многокритериальный анализ (MCA)
Б.7.5.1 Обзор
MCA использует ряд критериев для прозрачной оценки и сравнения общей производительности набора параметров. В общем, цель состоит в том, чтобы создать порядок предпочтения для набора опций. Анализ включает в себя разработку матрицы вариантов и критериев, которые ранжируются и агрегируются для обеспечения общего балла по каждому варианту. Эти методы также известны как множественный (или множественный) атрибут или многоцелевое принятие решений. Существует много вариантов этой техники, и многие ее приложения поддерживают их.
В целом группа знающих причастных сторон принимает следующий процесс:
- определить цель (цели), определить атрибуты (критерии или функциональные показатели эффективности), которые относятся к каждой цели;
- структурировать атрибуты в иерархию необходимых и желательных требований;
- определять важность каждого критерия и присваивать каждому из них вес;
- получить согласие причастных сторон на взвешенную иерархию;
- оценивать альтернативы по критериям (это может быть представлено в виде матрицы баллов);
- объединить множественные оценки с одним атрибутом в общую взвешенную оценку множества атрибутов;
- оценивать результаты по каждому варианту;
- оценить надежность ранжирования опций путем проведения анализа чувствительности для изучения влияния изменения весов иерархии атрибутов.
Существуют различные методы, с помощью которых может быть получен весовой коэффициент для каждого критерия и различные способы агрегирования критериев для каждого варианта в единый мультиатрибутный балл. Например, баллы могут быть объединены в виде взвешенной суммы или взвешенного продукта или с использованием процесса аналитической иерархии (метод выделения для весов и оценок на основе парных сравнений). Все эти методы предполагают, что предпочтение для любого критерия не зависит от значений других критериев. Если это предположение неверно, используются разные модели.
Поскольку оценки субъективны, анализ чувствительности полезен для изучения степени, в которой веса и оценки влияют на общие предпочтения между вариантами.
Б.7.5.2 Использование
MCA может использоваться для:
- сравнения нескольких параметров для анализа первого прохода для определения предпочтительных и неприемлемых вариантов;
- сравнения вариантов, где есть несколько и иногда противоречивых критериев;
- достижения консенсуса в отношении решения, когда разные причастные стороны имеют противоречивые цели или ценности.
Б.7.5.3 Входы
Входы представляют собой набор вариантов анализа и критериев, основанных на целях, которые могут быть использованы для оценки эффективности вариантов.
Б.7.5.4 Выходы
Результаты могут быть представлены как:
- представление порядка ранжирования вариантов от лучших до наименее предпочтительных;
- матрица, где оси матрицы - вес критериев и критерий оценки для каждого варианта.
Представление результатов в матрице позволяет исключить варианты, которые не соответствуют высоко взвешенным критериям или не удовлетворяют требуемому критерию.
Б.7.5.5 Сильные стороны и ограничения
Сильные стороны метода MCA включают то, что он может:
- обеспечить простую структуру для эффективного принятия решений и представления предположений и выводов;
- создавать более управляемые сложные решения, которые не поддаются анализу затрат и выгод;
- помочь рационально рассмотреть проблемы, когда необходимо сделать компромисс;
- помочь достичь согласия, когда причастные стороны имеют разные цели и, следовательно, разные ценности и критерии.
Ограничения:
- MCA может зависеть от смещения и плохого выбора критериев принятия решений;
- алгоритмы агрегации, которые вычисляют вес критериев на основе заявленных предпочтений или совокупности различных точек зрения, могут затенить истинную основу решения;
- система подсчета очков может упростить решение проблемы.