БИБЛИОТЕКА НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ Р 58771-2019. Национальный стандарт Российской Федерации. Менеджмент риска. Технологии оценки риска

Б.6 Технологии анализа зависимостей и взаимодействий

 

Б.6.1 Отображение причин

Б.6.1.1 Обзор

Отображение причин фиксирует индивидуальные восприятия в виде цепей аргументации в ориентированную схему, пригодную для изучения и анализа. События, причины и последствия могут быть отображены на карте.

Как правило, карты разрабатываются в рамках семинара, в котором участники из разных отраслей имеют задание на выявление, структурирование и анализ материала. Восприятие дополняется информацией из документов, где это необходимо. Входы могут быть получены с помощью различных инструментов, начиная с цветных стикеров и заканчивая специализированным программным обеспечением для поддержки групповых решений. Последние позволяют напрямую вводить проблемы и могут быть высокопроизводительными средствами работы. Выбранные инструменты должны позволять проводить анонимный поиск проблем, что позволит создать открытую и неконфронтационную среду для поддержки сосредоточенного обсуждения причинно-следственных связей.

В целом процесс начинается с создания воздействий, которые влияют на события или вызывают их в связи с рассматриваемой проблемой. Затем они группируются в соответствии с их содержанием и впоследствии изучаются для обеспечения всестороннего охвата.

Затем участники рассматривают, как каждое из событий может влиять на другие. Это позволяет связать дискретные события вместе, чтобы сформировать пути взаимных причин на карте. Этот процесс направлен на то, чтобы облегчить совместное понимание неопределенных событий, а также инициировать дальнейшее взаимодействие посредством обязательного объяснительного процесса, который необходим для создания цепочек аргументов о том, как одно событие влияет на другое. Существуют четкие правила для определения обоих узлов, представляющих события, и отношения, обеспечивающие надежное и всестороннее моделирование.

После того, как сеть событий была разработана для формирования полной карты, ее можно проанализировать, чтобы определить свойства, которые могут быть полезны для управления рисками. Например, для определения центральных узлов, которые являются событиями, возникающими в центре, и которые могут иметь существенное системное влияние; или, чтобы определить петли обратной связи, которые могут привести к динамическому и деструктивному поведению.

Б.6.1.2 Использование

Отображение причин позволяет идентифицировать ссылки и взаимодействия между рисками и темами в списке рисков.

Его можно использовать для создания причинно-следственной карты для события, которое произошло (например, перерасходы ресурсов в проекте, сбой системы). Судебные причинные карты могут помочь выявлять триггеры, последствия и динамику. Они позволяют определять корневую причину, которая может иметь решающее значение в рамках поданной претензии.

Причинные карты также могут быть использованы проактивно, чтобы охватить всестороннюю и системную оценку сценариев событий. Затем карту можно изучить, чтобы обеспечить глубокое обучение, а также сформировать основу для количественного анализа рисков, чтобы помочь определить приоритеты.

Они позволяют разрабатывать комплексную программу обработки рисков, а не учитывать каждый риск отдельно.

Семинары по причинному анализу могут проводиться на регулярной основе, чтобы гарантировать, что динамический характер риска оценивается и управляется надлежащим образом.

Б.6.1.3 Входы

Данные для формирования карт причин могут быть получены из различных источников, например, из отдельных интервью, где карты дают подробное представление о том, что произошло или могло произойти. Данные также могут быть взяты из документации, такой как отчеты, материалы, заявки и т.д. Эти данные могут использоваться напрямую или могут использоваться для построения цепочки аргументов, связанных с событиями для участников семинара.

Б.6.1.4 Выходы

Выходы включают:

- карты причин, которые обеспечивают визуальное представление событий риска и системных отношений между этими событиями;

- результаты анализа карт причин, используемые для идентификации возникающих кластеров в событиях, критических событий, определенных их центральностью, обратной связью и т.д.;

- документ, переводящий карты в текст и представляющий ключевые результаты, а также объясняющий выбор участников и процесс, используемый для разработки карт.

Результаты должны предоставлять информацию, относящуюся к решениям по управлению рисками, и контрольный журнал процесса, используемый для создания этой информации.

Б.6.1.5 Сильные стороны и ограничения

К сильным сторонам карт причин относятся:

- риски, относящиеся к рассматриваемому вопросу, рассматриваются с учетом многочисленных точек зрения участников;

- расходящаяся и открытая природа процесса позволяет оценить риск, снижая вероятность того, что вы не заметите критические события или связи;

- процесс позволяет результативно и эффективно охватывать взаимодействия между событиями и обеспечивает понимание их взаимосвязи;

- процесс определения сети событий, составляющих карту, может создать общий язык и понимание, которые жизненно важны для эффективного управления рисками.

Ограничения:

- процесс сопоставления является трудозатратным, поскольку он требует не только навыков в методе сопоставления, но и способности управлять группами при работе с инструментом сопоставления;

- карты носят качественный характер и там, где требуется количественная оценка, карты должны использоваться в качестве входных данных для других соответствующих моделей;

- содержание карты определяется источниками и поэтому тщательное рассмотрение состава участников имеет решающее значение, в противном случае важные области могут быть не покрыты.

Б.6.2 Анализ перекрестного влияния

Б.6.2.1 Обзор

Анализ перекрестного влияния - это общее название, данное семейству методов, предназначенных для оценки изменений в вероятности возникновения определенного набора событий, связанных с фактическим появлением одного из них. Анализ перекрестного воздействия включает в себя построение матрицы для отображения взаимозависимостей разных событий. Множество событий или тенденций, которые могут произойти, перечислены вдоль строк, а события или тенденции, на которые могут влиять данные события, перечислены вдоль столбцов. Затем эксперты должны оценить:

- вероятность для каждого события (в отдельности от других) на заданном временном горизонте;

- условную вероятность каждого события при условии, что происходит другое событие, т.е. для пары событий, оцененных экспертами:

- P(i/j) - вероятность i, если j случится

- P(i/не j) - вероятность i, если j не случится.

Результаты вводятся в компьютер для анализа.

Существует несколько разных методов расчета вероятностей одного события с учетом всех других событий. Независимо от того, как это делается, обычной процедурой является проведение моделирования методом Монте-Карло, где компьютерная модель систематически выбирает согласованные наборы событий и повторяется несколько раз. По мере увеличения количества итераций, генерируется новая апостериорная вероятность возникновения каждого события.

Анализ чувствительности осуществляется путем выбора начальной оценки вероятности или оценки условной вероятности, в отношении которой существует неопределенность. Это суждение меняется, и матрица запускается снова.

Б.6.2.2 Использование

Анализ перекрестного влияния используется в исследованиях прогнозирования и в качестве аналитического метода для прогнозирования того, как различные факторы влияют на будущие решения. Он может сочетаться со сценарным анализом (Б.2.5), чтобы решить, какой из сценариев является наиболее вероятным. Он может использоваться, когда есть несколько взаимодействующих рисков, например, в сложных проектах или в управлении рисками безопасности.

Временной горизонт анализа перекрестных воздействий обычно носит среднесрочный и долгосрочный характер и может быть от текущего года до 5 лет или до 50 лет в будущем. Необходимо четко указать временной горизонт.

Матрица событий и их взаимозависимости могут быть полезны для лиц, принимающих решения, как основа даже без вероятности, рассчитанной на основе анализа.

Б.6.2.3 Входы

Этот метод требует экспертов, которые знакомы с изучаемой проблемой и имеют возможность предусматривать будущие разработки и могут реально оценивать вероятности. Для вычисления условных вероятностей требуется вспомогательное программное обеспечение. Этот метод требует специфических знаний моделирования, если пользователь хочет понять, как данные обрабатываются в программе. Значительное время (несколько месяцев) обычно требуется для разработки и запуска моделей.

Б.6.2.4 Выходы

Результатом является список возможных сценариев будущего и их интерпретация.

Каждый запуск модели дает синтетическую будущую историю или сценарий, который включает в себя появление некоторых событий и несоблюдение других. На основе применяемой конкретной модели перекрестного воздействия сценарии вывода помогают создать наиболее вероятный сценарий, либо набор статистически согласованных сценариев, либо один или несколько вероятных сценариев из общего набора.

Б.6.2.5 Сильные стороны и ограничения

Сильные стороны анализа перекрестного воздействия:

- относительно легко внедрить вопросник с перекрестным воздействием;

- привлекает внимание в цепи причин (a влияет на b, b влияет на c и т.д.);

- помогает разъяснять и расширять знания о будущих событиях;

- полезен при изучении гипотезы и в поиске точек соприкосновения и расхождения.

Ограничения:

- количество событий, которые могут быть включены, ограничено на практике как программным обеспечением, так и временем, требуемым экспертами. Количество требуемых прогонов и количество оценок условных вероятностей быстро возрастают по мере увеличения количества включенных событий (например, с набором из десяти событий, на которые эксперт должен предоставить 90 условно-вероятностных суждений);

- реалистичное исследование требует значительной работы экспертов, часто наблюдается высокий уровень отсева экспертов;

- сложно определить события, которые должны быть включены, и любое влияние, не включенное в набор событий, будет полностью исключено из исследования; наоборот, включение нерелевантных событий может излишне усложнять окончательный анализ результатов;

- как и в других методах, основанных на выявлении знаний экспертов, метод опирается на уровень знаний респондентов.

TOC