ГОСТ Р 27.013-2019 (МЭК 62308:2006). Национальный стандарт Российской Федерации. Надежность в технике. Методы оценки показателей безотказности
БИБЛИОГРАФИЯ
[1] | МЭК 61709:2017 Компоненты электрические. Надежность. Стандартные условия для интенсивностей отказов и модели напряжений для преобразования (Electronic components - Reliability - Reference conditions for failure rates and stress models for conversion) |
[2] | РД 50-204-87 Методические указания. Надежность в технике. Сбор и обработка информации о надежности изделий в эксплуатации. Основные положения |
[3] | V. Loll, From Reliability Prediction to a Reliability Budget, Proceedings of the Annual Reliability and Maintainability Symposium, 1998 |
[4] | Fick, Uber Diffusion, Poggendorff's Annalen, vol. 94, p. 59, 1855 |
[5] | W. Weibull. Statistical Design of Fatigue Experiment//Journal of Applied Mechanics, pp. 109 - 113, March, 1952 |
[6] | D. Kececioglu and J. Jacks. The Arrhenius, Eyring. Inverse Power Law and Combination Models in Accelerated Life Testing//Reliability Engineering, vol. 8, pp. 1 - 9, 1984 |
[7] | D.S. Peck and O.D. Trapp. Accelerated Testing Handbook//Technology Associates, Portola Valley, CA, 1987 |
[8] | W. Nelson. Accelerated Testing: John Wiley & Sons, New York, 1990 |
[9] | D.J. Klinger. On the Notion of Activation Energy in Reliability: Arrhenius, Eyring and Thermodynamics. Proceedings of the Reliability and Maintainability Symposium, pp. 295 - 300, 1991 |
[10] | J.M. Hu, D. Barker, A. Dasgupta and A. Arora. Role of Failure Mechanism Identification in Accelerated Testing. Proceedings of the Reliability and Maintainability Symposium, pp. 181 - 188, 1992 |
[11] | S. Arrhenius, Z. Physik//Chem. vol. 4, 1889 |
[12] | L.F. Coffin, Jr. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal//Transactions of the ASME, vol. 76, 5p. 931 - 950, 1954 |
[13] | S.S. Manson. Fatigue: A Complex Subject-Some Simple Approximations//Experimental Mechanics, vol. 5, no. 7, pp. 193 - 226, 1965 |
[14] | L.F. Coffin, Jr. The Effect of Frequency on the Cyclic Strain and Low Cycle Fatigue Behavior of Cast Udimet 500 at Elevated Temperature//Metallurgical Transactions, vol. 2, pp. 3105 - 3113, 1971 |
[15] | W. Engelmaier. Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling//IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. CHMT-6, no. 3, 1985 |
[16] | D.R. Olsen and H.M. Berg. Properties of Bond Alloys Relating to Thermal Fatigue//IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. CHMT-2, 1979 |
[17] | H.D. Solomon. Low Cycle Fatigue of Surface Mounted Chip Carrier/Printed Wiring Board Joints. Proceedings of the 39th Electronic Components Conference, IEEE, pp. 277 - 292, 1989 |
[18] | J.K. Hagge. Predicting Fatigue Life of Leadless Chip Carriers Using Manson-Coffin Equations, Proceedings of the IEPS, pp. 199 - 208, 1982 |
[19] | C.F. Dunn and J.W. McPherson. Temperature-Cycling Acceleration Factors for Aluminum Metallization Failure in VLSI Applications. Proceedings of the 28th International Reliability Physics Symposium, IEEE, pp. 252 - 258, 1990 |
[20] | S. Glasstone, K.J. Laidlerand H.E. Eyring. The Theory of Rate Processes, McGraw-Hill, New York, 1941 |
[21] | D.S. Peck. Comprehensive Model of Humidity Testing Correlation, Proceedings of the 24th International Reliability Physics Symposium, IEEE, pp. 44 - 50, 1986 |
[22] | D.S. Peck and W.R. Thorpe, Highly Accelerated Stress Test History, Some Problems and Solutions. Tutorial Notes, 28th Reliability Physics Symposium, IEEE, pp. 4.1 - 4.27, 1990 |
[23] | F. Jensen. How to Succeed in Modeling, Quality and Reliability//Engineering International, vol. 15, p. 159, 1999 |
УДК 658.562.012.7:65.012.122:006.354 | ОКС 03.120.30 |
Ключевые слова: надежность, показатель надежности, анализ долговечности, стадии жизненного цикла, анализ подобия, наработка до отказа, структурная схема надежности, техническое обслуживание, ориентированное на безотказность, интенсивность отказов, функция распределения, вероятность безотказной работы |
