ГОСТ Р 58367-2019. Национальный стандарт Российской Федерации. Обустройство месторождении нефти на суше. Технологическое проектирование
6.3 Подготовка нефти, газа и воды
6.3.1 Общая часть
6.3.1.1 Проектируемые сооружения подготовки нефти, ПНГ и воды формируют в единый технологический комплекс - ЦПС или УПН.
6.3.1.2 Разработку проектных решений по подготовке нефти, ПНГ и воды осуществляют на основании задания на проектирование и результатов исследовательских работ.
Результаты исследований должны включать:
- физико-химические свойства и компонентный состав нефти, газа и воды;
- реологию, в том числе вязкостно-температурные зависимости нефти и НГВС;
- температуру застывания нефти;
- рекомендации по выбору технологии и режимов работы УПН (температура, тип и расход деэмульгаторов, время пребывания в аппаратах) на основании теплохимических исследований эмульсионных свойств нефти;
- рекомендации по выбору технологии подготовки дренажных, ловушечных и нефтешламовых эмульсий;
- рекомендации по подбору различных реагентов (ингибиторов коррозии, ингибиторов солеотложений, ингибиторов АСПО, депрессаторов, нейтрализаторов кислорода, бактерицидов и т.д.), их расход, точки и способы ввода;
- рекомендации по схемам подготовки нефти, ПНГ и пластовой воды.
Предварительное обезвоживание нефти преимущественно осуществляют в трехфазных аппаратах для совместной подготовки нефти и воды.
6.3.1.3 На ЦПС (УПН) комплекс сооружений предусматривают преимущественно в блочном и блочно-комплектном исполнении, обеспечивающем последовательное проведение непрерывных, взаимосвязанных технологических процессов по приему и подготовке нефти, ПНГ и воды.
6.3.1.4 НГСВ в зависимости от конкретных условий подают через все технологические сооружения подготовки за счет максимального использования энергетических возможностей продуктивных пластов месторождения, насосов механизированной добычи нефти, ДНС. Вариант подачи НГВС обосновывают технико-экономическими расчетами.
Целесообразность размещения всего комплекса сооружений по подготовке НГВС на ЦПС (УПН) или части этих сооружений на месторождении нефти (СУ, УПСВ, ДНС и др.) определяют технико-экономическими расчетами в ПД.
6.3.1.5 Технологический комплекс по подготовке нефти на ЦПС (УПН) обеспечивает:
- прием и предварительное разделение поступающей НГВС;
- подготовку нефти;
- подготовку и утилизацию пластовых и производственных, поверхностных (дождевых) вод;
- прием, измерение количества и параметров подготовленной нефти, газа и воды;
- прием и подготовку ПНГ к транспортированию и измерение количества газа;
- подачу подготовленной нефти на ПСП и далее для отгрузки потребителю;
- рациональное использование природных ресурсов и экономное расходование материальных, топливно-энергетических и трудовых ресурсов, в том числе за счет использования вторичного тепла от печей нагрева и излишков тепла с технологии.
6.3.1.6 Производительность ЦПС (УПН) определяют по количеству подготовленной нефти в годовом исчислении из расчета 365 рабочих дней в году, а также по максимальному объему поступления НГВС.
6.3.1.7 При проектировании сооружений технологического комплекса ЦПС (УПН) рекомендуется применение следующих технических решений:
- применение блочных и блочно-комплектных устройств основного технологического назначения, блок-боксов и зданий из ЛМК для объектов производственно-вспомогательного назначения;
- блокирование в единый технологический узел с этажной компоновкой основного технологического оборудования;
- применение аппаратов совместной подготовки нефти и воды;
- применение емкостной аппаратуры с большой единичной мощностью;
- объединение внутриплощадочных коммуникаций;
- выбор материального исполнения оборудования и трубопроводов в соответствии с коррозионной активностью обращающихся продуктов;
- применения высокоэффективных ингибиторов коррозии в трубопроводных системах при перекачках НГВС и реагентов-деэмульгаторов при подготовке нефти;
- применение системы мониторинга процесса коррозии трубопроводов и технологического оборудования.
Не допускается применение реагентов, содержащих хлорорганические соединения.
6.3.1.8 Разработку технологического процесса осуществляют по рекомендациям исследований в зависимости от физико-химических свойств НГВС, а также конструктивных особенностей многофункционального технологического оборудования и трубной обвязки, с использованием реагентов-деэмульгаторов и других технологических возможностей, а также с учетом унифицированных схем технико-технологических разработок компании технического заказчика.
6.3.1.9 Основные технологические коммуникации ЦПС (УПН) рассматривают как единую систему обеспечения технологических процессов, происходящих в отдельных функциональных блоках подготовки нефти.
6.3.1.10 На основании перспективного плана добычи нефти принимают решение о строительстве ЦПС (УПН) отдельными технологическими линиями (потоками).
Производительность технологических линий (потоков) предусматривают из условия обеспечения 0,7 расчетной мощности ЦПС или УПН. При трех технологических линиях и более коэффициент 0,7 не учитывают.
6.3.1.11 В случае наличия в комплексе только одной технологической линии запас производительности составляет 20%, включая резерв для повторной подготовки нефти, физико-химические свойства которой не отвечают заданным требованиям.
6.3.1.12 Рекомендуемую скорость движения технологических потоков компонентов НГВС в трубопроводах принимают согласно таблице 1.
6.3.1.13 При заполнении технологического объекта перед пуском для исключения динамического удара рекомендуется арматуру с Ду 300 мм и более оснащать обводным (байпасным) трубопроводом с арматурой условным диаметром не менее 50 мм. Обводной трубопровод с арматурой должен иметь надежное крепление от динамического воздействия.
6.3.1.14 Арматуру массой более 100 кг устанавливают на собственную опору.
6.3.1.15 Расчет и установку предохранительных клапанов выполняют по ГОСТ 31294, ГОСТ 12.2.085.
6.3.1.16 В случае установки предохранительного клапана на удалении от патрубка, предназначенного для его установки, диаметр трубопровода определяют с учетом падения давления согласно ГОСТ 31294.
6.3.1.17 Предохранительные клапаны на сосудах и аппаратах, работающих под давлением, рассчитывают и устанавливают в соответствии с применением на сооружениях одной или двух факельных систем (низкого и высокого давлений).
6.3.1.18 Продувочные свечи, устанавливаемые на открытых площадках, должны иметь в нижних точках патрубок с арматурой для обеспечения дренажа скапливающейся жидкости.
6.3.1.19 Жидкостные сбросы от предохранительных клапанов осуществляют через факельный сепаратор в специальные емкости.
6.3.1.20 Объем емкостей принимают из расчета работы предохранительных клапанов в течение 3 - 5 мин. В обоснованных случаях допускается сброс жидких продуктов от предохранительных клапанов направлять в другие сосуды и аппараты.
6.3.1.21 Аварийные задвижки с дистанционным и автоматическим управлением должны иметь также ручной привод.
6.3.1.22 Площадки подогревателей нефти в блочном исполнении ограждают сплошной стеной высотой не менее 0,5 м, а для трубчатых печей типа ПТБ, ПП, печей с промежуточным теплоносителем и других типов печей - бордюрным камнем высотой не менее 0,15 м.
6.3.1.23 Для продувки змеевика печи предусматривают стационарный подвод азота или пара. Перед подключением этой линии к змеевику устанавливают обратный клапан и два запорных устройства, между которыми предусматривают установку продувочного вентиля в атмосферу для контроля за плотностью запорной арматуры и спуска конденсата.
6.3.1.24 При соответствующем обосновании допускается принимать вместо одной две печи нагрева нефти с меньшей единичной мощностью, при этом суммарная мощность печей не должна превышать расчетную более чем в 1,5 раза.
При количестве печей три и более предусматривают резерв мощности печей для обеспечения подачи нагреваемой среды (в случае выхода из строя одной из печей) в остальные печи.
При проектировании печей рассматривают экономическую целесообразность:
- использования тепла уходящих газов для обеспечения технологического процесса или использования на собственные нужды;
- использования печей с повышенным КПД от 85% и более;
- использования ЧРП привода для подачи воздуха в печь с подключением к АСУ ТП;
- использования теплообменников для подогрева потока на входе в печь за счет остаточного тепла отделенной воды или нефти.
6.3.1.25 Печи нагрева типа ПТБ оборудуют системой автоматического пожаротушения инертным газом или паром.
Для печей с открытым огневым процессом, размещенных на открытых площадках, принимают меры для изолирования от горючей газопаровоздушной среды при авариях на соседних установках.
Предусматривают противоаварийную автоматическую защиту топочного пространства нагревательных печей и средства автоматической подачи инертного газа или водяного пара в топочное пространство и в змеевики.
6.3.1.26 На открытых площадках печей устанавливают газоанализаторы, исходя из возможной загазованности от расположенных вблизи взрывопожароопасных установок. Расстояние установки газоанализаторов от печей - не менее 15 м и не более 20 м друг от друга.
Газоанализаторы выдают управляющий сигнал для автоматического отсечения подачи топливного газа и отсечения подачи нагреваемого продукта при концентрации горючих веществ 50% НКПР с включением подачи азота в топочное пространство печи, а также в змеевик печи для обеспечения опорожнения змеевика с автоматическим открытием арматуры дренажа змеевика печи или созданием завесы (паровые/газовые) для предотвращения попадания к нагретым частям печи взрывоопасных газовоздушных смесей со стороны технологических установок. Возникновение взрывоопасной среды со стороны технологических установок в направлении печи должно приводить к автоматическому срабатыванию сигнализации по месту и на щите оператора.
6.3.1.27 Для аварийного отключения блоков и печей нагрева (в случае прогара, разрыва трубопровода и др.) на входе и выходе нефти и газа за пределами площадки, но не ближе 10 м от печей нагрева, устанавливают запорную арматуру с дистанционным приводом.
6.3.1.28 Для снижения опасности распространения аварии обеспечивают экстренное, при необходимости автоматическое, опорожнение в специально предназначенные для этой цели аварийные (дренажные) емкости, в резервуары нефтеводяной смеси или в технологические аппараты смежных объектов.
По способу организации аварийного опорожнения обеспечивают следующие виды слива:
- самотечные;
- опорожнение перекачкой с помощью насоса;
- вытеснение инертными газами.
6.3.1.29 Для опорожнения технологических сосудов, аппаратов, оборудования и трубопроводов применяют самотечную систему опорожнения. Применение принудительной системы допускается при невозможности выполнения самотечной системы. Решение о необходимости автоматического опорожнения определяется в ПД.
Система автоматического опорожнения должна иметь возможность управления из операторной и возможность ручного местного управления.
Объем дренажной емкости принимают из расчета полного слива жидкости из одного наибольшего по объему аппарата.
В случае необходимости установки двух и более дренажных емкостей, оборудованных насосами, допускается суммарный объем емкостей принимать с учетом объема продукта, откачиваемого одним из насосов за время слива аварийного аппарата. После освобождения технологического аппарата необходимо опорожнение дренажных емкостей.
6.3.1.30 Для обеспечения самотечного слива из технологических аппаратов предварительно необходимо осуществить сброс паров и газов из аппаратов в факельную систему.
6.3.1.31 Расстояние от производственных зданий до аварийных (дренажных) емкостей принимают как для технологического оборудования, расположенного вне здания.
6.3.1.32 Аварийные (дренажные) емкости размещают вне габаритных размеров этажерки.
6.3.1.33 При проектировании КС воздуха руководствуются положениями, изложенными в 6.2.8.
6.3.1.34 Нормы запасов реагентов и смазочных материалов на расходных складах ЦПС принимают в размере 20 - 30 суточной потребности, если иное требование не приведено в задании на проектирование. Неснижаемые запасы масла для компрессорных станций составляют не менее 50% объема масляных систем установленных компрессоров, включая запас на пополнение системы из расчета 45-дневной потребности.
6.3.1.35 На открытых площадках и сооружениях, расположенных под навесом, предусматривают ремонтные площадки с въездом автотранспорта или подъезды для автотранспорта с обеспечением возможности монтажа и демонтажа оборудования.
6.3.1.36 На технологических установках предусматривают разводку трубопроводов инертного газа и ресиверы необходимого давления, обеспечивающие потребности оборудования в инертном газе при продувке и испытаниях на плотность. Необходимость проектирования установок получения инертного газа или применение передвижных паровых установок решается в проекте.
В обоснованных случаях (при отсутствии на теплообменной аппаратуре шарниров на крышках люков и др.) осуществляют механизацию ремонтных работ на базе стационарных средств, обеспечивающих снятие крышек и распределительных коробок.
6.3.1.37 Проектирование площадок печей выполняют с учетом проведения ремонтных работ на печах передвижной крановой техники.
6.3.1.38 Компоновку блоков УПН или установок ЦПС выполняют из условия обеспечения:
- принятого технологического режима установки;
- минимального количества встречных перекачек;
- свободного доступа к местам обслуживания оборудования, средствам измерений, КИПиА, а также арматуре при их обслуживании и ремонте;
- возможности ведения ремонтных работ с помощью средств механизации;
- требований норм пожарной безопасности.
6.3.1.39 Сброс паров и газов из аппаратов предусматривают в газосборную сеть или на факел.
Сброс нефти с УПН, физико-химические свойства которой не отвечают заданным требованиям, предусматривают в резервуары для НГСВ.
6.3.2 Установка предварительного сброса пластовой воды
6.3.2.1 УПСВ рассматривается как составная часть единого технологического комплекса сооружений по сбору и подготовке нефти, газа и воды.
6.3.2.2 Проектирование УПСВ выполняют в соответствии с разделом 5 и 6.3.1.
6.3.2.3 Размещение УПСВ должно обеспечивать максимальную эффективность сбора НГВС и обосновываться технико-экономическими расчетами в ПД.
Проектирование УПСВ осуществляют по результатам исследовательских работ и разработанных на их основе рекомендаций.
При подготовке технико-экономического расчета по месту размещения УПСВ рассматривают вариант максимального приближения объекта к центру добычи нефти, а также учитывают снижение энергозатрат за счет уменьшения расстояния перекачки НГВС от скважин до УПН (ЦПС) и возврата воды для закачки в пласт.
6.3.2.4 Технологическая схема процесса обеспечивает:
- сепарацию НГВС;
- обезвоживание до содержания воды в нефтеводяной смеси до 5 - 10% (массовых), для тяжелых и высоковязких нефтей - до 5 - 20% (массовых), степень обезвоживания определяется исследовательскими работами, выполняемыми специализированными организациями.
6.3.2.5 Процесс предварительного обезвоживания нефти предусматривают при обводненности поступающей продукции скважин не менее 15 - 20% и осуществляют, как правило, без дополнительного нагрева продукции скважин с применением деэмульгаторов, высокоэффективных при умеренных и низких температурах процесса предварительного обезвоживания нефти.
6.3.2.6 Предварительное обезвоживание нефти осуществляют в аппаратах для совместной подготовки нефти и воды. При этом сбрасываемая пластовая вода должна иметь физико-химические свойства, обеспечивающие ее закачку в продуктивные горизонты без дополнительной очистки (предусматривается только дегазация воды).
Сброс пластовой воды с аппаратов предварительного обезвоживания нефти предусматривают под остаточным давлением, обеспечивающим подачу ее на дегазацию.
При недостижении необходимого качества пластовой воды организовывают очистку пластовой воды в соответствии с 6.3.4.
6.3.3 Установка подготовки нефти
6.3.3.1 УПН является составной частью единого технологического комплекса сооружения по сбору НГВС и подготовке нефти. Как правило, УПН размещают на ЦПС.
6.3.3.2 Разработку технологической схемы установки подготовки нефти осуществляют на основании результатов работ специализированной организации (по изучению технологических свойств нефти месторождения, исследованию реологических свойств нефти и водонефтяных эмульсий, теплохимических исследований по определению параметров процессов предварительного и глубокого обезвоживания и обессоливания нефти, подбору эффективных деэмульгаторов, изучению состава и физико-химических свойств пластовых вод и их стабильности) и разработанных в результате основных технологических параметров (время нахождения в аппарате; температура, расход реагента и др.) процесса подготовки нефти.
6.3.3.3 Разработку ПД УПН выполняют в соответствии с разделом 5 и 6.3.1.
6.3.3.4 Технологический комплекс сооружений по подготовке нефти обеспечивает физико-химические свойства добываемой нефти после ее подготовки согласно техническому регламенту или иному документу, определяющему физико-химические свойства нефти:
- глубокое обезвоживание нефти;
- обессоливание;
- дегазацию и стабилизацию нефти для обеспечения давления насыщенных паров и физико-химических свойств подготовленной нефти;
- очистку нефти от сероводорода и меркаптанов (при необходимости).
6.3.3.5 Технологическая схема процесса подготовки нефти обеспечивает:
- полную герметизацию процесса подготовки нефти;
- требуемое качество подготовленной нефти;
- возможность освобождения аппаратуры и трубопроводов при ремонтах и аварийных остановках;
- использование тепла НГВС и по возможности рекуперацию тепла добытой нефти и тепла дренажных вод;
- прием нефти, физико-химические свойства которой не соответствуют заданным требованиям, и подачу ее на повторную подготовку;
- прием подготовленной нефти в резервуары в условиях отсутствия возможности передачи для транспортирования нефти в магистральный трубопровод;
- защиту оборудования, трубопроводов и арматуры от коррозии, выпадения гидратов и т.д.;
- измерение количества и физико-химических свойств материальных потоков.
Технологические расчеты, выбор аппаратуры и трубопроводов проводят на основе данных материального баланса установки и научных рекомендаций по подготовке нефти, с учетом резерва производительности установки до 20%.
После выбора аппаратуры и определения диаметров трубопроводов в технологической схеме указывают значения производительности по каждой ступени технологического процесса и по установке в целом.
При размещении технологического оборудования УПН на схеме учитывают последовательность движения потока подготавливаемой нефти согласно технологическому процессу. При расчете материального баланса учитывают требования 6.3.4.18 и 6.3.9.4.
6.3.3.6 При проектировании УПН рассматривают следующие основные технологические варианты:
- подготовка нефти в газонасыщенном состоянии при перекачках ее через все сооружения УПН за счет энергии пласта, насосов механизированной добычи нефти или дожимных насосных станций;
- подготовка нефти при перекачках ее сырьевыми насосами через все сооружения УПН.
Выбор оптимального варианта проводят на основании технико-экономических расчетов.
6.3.3.7 При проектировании УПН предусматривают следующие мероприятия по сохранению тепла продукции и уменьшению его расхода:
- теплоизоляция труб, аппаратов и арматуры;
- поддержание температуры материальных потоков с помощью обогрева оборудования, трубопроводов и арматуры (необходимость использования рассматривается индивидуально для каждого проекта);
- преимущественное применение "холодных методов" деэмульгации нефти с использованием реагентов-деэмульгаторов.
6.3.3.8 Для нагрева тяжелых нефтей и нефтяных эмульсий рекомендуется применение нагревателей с промежуточным теплоносителем.
6.3.3.9 Пресная вода для обессоливания нефти должна быть химически совместимой с пластовой водой.
6.3.3.10 Для осуществления аналитического контроля физико-химических свойств нефти, газа и воды предусматривают установку пробоотборных устройств на всех ступенях подготовки.
Пробы для определения физико-химических свойств нефти отбирают в соответствии с ГОСТ 2517. Отбор проб попутного нефтяного газа выполняют в соответствии с ГОСТ 31370.
6.3.3.11 Электродегидраторы оснащают надежным ограждением для защиты персонала от высокого напряжения. Устройство ограждения и меры безопасности - в соответствии с требованиями [12] и [21].
6.3.4 Установка подготовки пластовой воды
6.3.4.1 Установка подготовки пластовой воды является составной частью единого технологического комплекса сооружений по подготовке НГВС.
6.3.4.2 На площадках УПН и УПСВ проводят совместную очистку пластовых и производственно-дождевых сточных вод при условии их совместимости.
6.3.4.3 Разработку технологической схемы установки подготовки пластовой воды осуществляют на основании результатов исследовательских работ, выполняемых специализированными организациями.
Результаты исследовательских работ включают:
- состав и физико-химические свойства вод;
- стабильность и химическую совместимость вод;
- начальное и конечное содержание в воде нефти и механических примесей;
- состав и количество водорастворенных газов;
- величину коррозионной активности воды;
- рекомендации по технологии подготовки пластовых и сточных вод (совместная очистка пластовых и производственно-дождевых сточных вод или раздельная);
- рекомендации по выбору ингибиторов коррозии, бактерицидов, ингибиторов солеотложений, нейтрализаторов сероводорода и кислорода;
- рекомендации по местам установки образцов - свидетелей коррозии;
- прогноз количества нефтешлама, образующегося в аппаратах при водоподготовке.
6.3.4.4 Подготовка пластовых, производственных и поверхностных (дождевых) сточных вод для закачки в продуктивные или поглощающие горизонты сводится к удалению из них нефти, газа, механических примесей и железа, а также снижению коррозионной активности воды.
6.3.4.5 В зависимости от требований, предъявляемых к физико-химическим свойствам воды для ее очистки, применяют различные методы:
- отстаивание;
- фильтрование;
- флотацию и др.
Физико-химические свойства закачиваемой в пласт воды определяют техническим проектом на разработку месторождения нефти с учетом геолого-физических характеристик продуктивных пластов.
6.3.4.6 В качестве сооружений для совместной очистки пластовых, производственных и поверхностных (дождевых) сточных вод применяют напорные полые и полочные отстойники, напорные отстойники с коалесцирующей загрузкой, резервуары-отстойники, резервуары-отстойники с гидрофобным жидкостным фильтром (слоем нефти), напорные и безнапорные фильтры и флотаторы, гидроциклоны и другие сооружения, разработанные специализированными организациями по результатам исследовательских работ.
Возможные показатели эффективности работы отдельного оборудования приведены в таблице 2.
Таблица 2
Эффективность работы отдельного оборудования установки
подготовки пластовой воды
Сооружение | Режим работы | Содержание в исходной воде, мг/л | Содержание в очищенной воде, мг/л | ||
нефти | механических примесей | нефти | механических примесей | ||
Мультигидроциклон | - | 3000 | 150 | 50 | 15 |
Резервуар-отстойник | T = 8 - 16 ч, приточный режим | 1000 | 200 | Менее 50 | 30 - 40 |
Резервуар-отстойник с гидрофобным жидкостным фильтром | T = 16 - 24 ч | 5000 | 300 | 25 - 40 | 20 - 35 |
Напорный полый отстойник | T = 2 ч | 1000 | 100 | 30 - 50 | 25 - 40 |
Напорный полочный отстойник | T =1 ч | 1000 | 100 | Менее 20 | Менее 20 |
Отстойник с коалесцирующей загрузкой | T = 1,5 - 2,0 ч | 2000 | 70 | 10 - 20 | 10 - 15 |
Флотатор | T = 20 мин | 200 | 100 | 30 - 50 | 30 - 40 |
Флотатор-дегазатор | T = 20 мин | 200 | 20 | 25 | 15 |
Буфер-дегазатор | T = 20 - 40 мин | 50 | 40 | 25 | 20 |
Фильтр кварцевый | C = 5 м/ч; размер частиц песка 0,5 - 1,2 мм | 50 | 40 | 5 - 10 | 5 - 10 |
T - продолжительность процесса; C - скорость фильтрования. |
6.3.4.7 Технологические расчеты, выбор аппаратуры и трубопроводов проводят на основе данных материального баланса установки и рекомендаций по подготовке воды, с учетом резерва производительности установки до 15%.
Резерв емкостного оборудования предусматривают в соответствии с 5.13.
6.3.4.8 Для отключения аппаратов при их выводе на ремонт предусматривают установку поворотных заглушек.
6.3.4.9 При очистке пластовых вод в аппаратах с избыточным давлением предусматривают их дегазацию, исключающую выделение углеводородного и сероводородного газа в помещениях насосных станций.
Дегазатор совмещают с буферной емкостью насосной станции.
6.3.4.10 Сброс выделившегося газа проводят на факел низкого давления или при соответствующем обосновании - на свечу рассеивания.
6.3.4.11 Для флотационной очистки пластовых сточных вод в первую очередь используют растворенные в воде газы и только при недостаточном их объеме (менее 15 - 20 л/м3) предусматривают искусственное насыщение воды газом. Для процесса флотации используют инертный или нефтяной бессернистый газ.
6.3.4.12 Для доочистки воды фильтрованием применяют, как правило, напорные фильтры с однослойными и двухслойными загрузками. В качестве загрузки фильтра используют кварцевый песок, антрацитовую или мраморную крошку, дробленый керамзит и др.
6.3.4.13 Промывку фильтров осуществляют очищенной или неочищенной сточной водой с подогревом или без него в зависимости от местных условий.
6.3.4.14 При промывке фильтров холодной водой предусматривают периодические пропарки загрузки фильтра передвижными паровыми установками или от котельной.
6.3.4.15 На фильтровальных станциях по очистке пластовых и сточных вод предусматривают специальное устройство для периодической догрузки и полной замены фильтрующего материала. Емкость склада для загрузочного материала составляет не менее 0,5 объема загрузки фильтров станции при замене его в фильтрах через 1 - 2 года.
6.3.4.16 Регенерацию отработанного песка проводят с помощью ПАВ в сочетании с пропаркой острым паром.
6.3.4.17 Уловленную обводненную нефть возвращают в технологический процесс подготовки нефти.
6.3.4.18 Для очистки пластовых, производственно-дождевых вод методом динамического отстаивания применяют вертикальные резервуары.
Условия применения резервуаров приведены в таблице 3.
Таблица 3
Условия применения резервуаров для очистки сточных вод
Условие | Показатель |
Содержание нефти в воде, поступающей на очистку, мг/л, не более | 1000 |
Кратковременно (в сумме не более 2 ч в сутки) допустимо содержание нефтепродуктов в поступающей воде, %, не более | 1 |
Содержание твердых механических примесей в воде, поступающей на очистку, мг/л, не более | 200 |
Содержание нефтепродуктов в очищенной воде, мг/л, не более | 50 |
Содержание твердых механических примесей в очищенной воде, мг/л, не более | 40 |
6.3.4.19 Подачу сточных вод в резервуар предусматривают через специальное устройство, позволяющее обеспечить равномерное распределение потока.
6.3.4.20 Поддержание температуры в резервуаре осуществляют подачей теплоносителя в подогреватель (змеевик) либо греющими кабелями и наличием теплоизоляции. Решение о необходимости подогрева и наличия тепловой изоляции принимают с учетом рекомендаций о поддержании определенного температурного режима при подготовке пластовой воды по результатам исследований специализированной организации.
6.3.4.21 Для соблюдения технологических режимов очистки пластовой и производственно-дождевой сточной воды в резервуаре предусматривают:
- контроль уровня жидкости с выводом показаний в операторную;
- контроль уровня раздела фаз "нефть - жидкость" с выводом показаний в операторную;
- сигнализацию минимального и максимального уровней в операторную;
- контроль температуры жидкости с индикацией по месту и с сигнализацией минимальной температуры в операторную (при необходимости);
- контроль давления газового пространства.
6.3.4.22 Осадок, выпавший на очистных сооружениях, отводят в шламовый амбар или на гидроциклоны, а воду возвращают на очистные сооружения.
6.3.4.23 Шламовый амбар проектируют секциями, имеющими земляное обвалование или выполненными из железобетонных конструкций.
6.3.4.24 Полезную площадь шламового амбара F, м2, определяют по формуле
(6.1)
где - суммарное количество осадков, м3/сут;
95 - влажность поступающего осадка, %;
70 - средний процент влажности осадка в накопителе;
П - продолжительность накопления осадка в годах (1 - 2 года);
h - высота слоя осадка, принимается равной 1 - 1,5 м.
Полная высота оградительных и распределительных валов земляных емкостей принимается равной 2 - 2,5 м, ширина валов по верху - не менее 1,5 м.
6.3.4.25 Подачу осадков в шламовый амбар, как правило, предусматривают по напорным трубопроводам с распределением по каждой секции лотками или гибкими шлангами.
6.3.4.26 В дне и боковых откосах шламовых амбаров (земляных емкостей) предусматривают противофильтрационный экран.
6.3.4.27 По мере накопления шлама в шламовом амбаре осуществляют одно из следующих мероприятий:
- обезвреживание, включая сжигание (при наличии лицензии на деятельность по сбору, транспортированию, обработке, утилизации, обезвреживанию, размещению отходов I - IV классов опасности);
- транспортирование отходов на объекты размещения отходов, внесенные в государственный реестр объектов размещения отходов, в соответствии с требованиями, правилами и нормативами, разработанными и утвержденными федеральными органами исполнительной власти в области обращения с отходами;
- утилизацию, в том числе на собственные нужды (при наличии лицензии на деятельность по сбору, транспортированию, обработке, утилизации, обезвреживанию, размещению отходов I - IV классов опасности).
6.3.5 Установка подготовки попутного нефтяного газа
6.3.5.1 В зависимости от направления использования ПНГ и условий его транспортирования до потребителей применяют следующие способы подготовки газа:
- сепарационная подготовка газа по ступеням сепарации;
- очистка от мехпримесей и капельной жидкости;
- НТС;
- НТК (турбодетандер);
- осушка газа от влаги адсорбционным способом;
- осушка газа от влаги абсорбционным способом;
- мембранная технология;
- технология по очистке газа от сероводорода и углекислого газа.
Целесообразность и выбор метода осушки газа от влаги, тяжелых углеводородов и вредных примесей определяют в ПД результатом технико-экономических расчетов в зависимости от назначения:
- собственные технологические нужды;
- закачка газа в пласт;
- межпромысловая перекачка;
- топливный газ для газотурбинных и газопоршневых приводов компрессоров и электростанций;
- поставки газа потребителям;
- поставка газа в единую систему газоснабжения.
6.3.5.2 Осушку газа от воды проводят методом адсорбции или абсорбции. Подготовку ПНГ осуществляют с использованием мембранных технологий, обеспечивающих осушку газа от воды и тяжелых углеводородов, а также очистку от вредных примесей (серосодержащих соединений, CO2).
6.3.5.3 При бескомпрессорной перекачке смеси газов первой и концевых ступеней сепарации технологическая схема подготовки предусматривает:
- при перекачке газа в двухфазном состоянии и в условиях, приводящих к образованию кристаллогидратов, компримирование газов концевых ступеней сепарации до давления первой ступени сепарации и совместную осушку газов первой и концевых ступеней сепарации от влаги абсорбционным способом (или подачу ингибитора гидратообразования);
- при перекачке газа в однофазном состоянии компримирование газов концевых ступеней сепарации до давления первой ступени сепарации, его осушку от влаги или извлечение из газа первой ступени или смеси газов первой и концевых ступеней сепарации тяжелых углеводородов способом НТК с впрыском гликоля (или подачу ингибитора гидратообразования).
Извлечение тяжелых углеводородов способом НТС или НТК из газов первой ступени или из смеси газов первой и концевых ступеней сепарации предусматривают лишь в тех случаях, когда подготовка газа другими способами не обеспечивает возможность транспортирования газа в однофазном состоянии и подтверждается технико-экономическими расчетами.
6.3.5.4 При подготовке газа для закачки в пласт температура гидратообразования осушенного газа должна быть не менее чем на 5 °C ниже минимальной расчетной температуры газа в процессе его транспортирования и закачки при давлении процесса.
6.3.5.5 Перекачка неосушенного газа в однофазном состоянии возможна при использовании газа на собственные нужды предприятия (на производство электроэнергии, котельную, технологические печи, приводы насосов и компрессоров и другие технологические нужды) без передачи в систему магистрального транспорта.
6.3.5.6 Перекачка и использование неосушенного газа требует обеспечения условий сохранения газа в однофазном состоянии, что должно обеспечиваться поддержанием температуры и давления в системе транспорта или закачкой ингибитора гидратообразования.
6.3.5.7 Выделившийся при подготовке газа углеводородный конденсат направляют в подготовленную нефть, если это не приводит к увеличению давления насыщенных паров нефти сверх установленного по ГОСТ Р 51858, или в нефть перед первой ступенью сепарации.
Возможность подачи в нефть перед первой ступенью сепарации углеводородного конденсата, полученного в процессе подготовки газа при его компрессорной перекачке, определяют технико-экономическими расчетами.
6.3.5.8 При проектировании УПГ руководствуются следующими основными положениями:
- установки осушки газа должны, как правило, быть в блочно-комплектном исполнении, поставляться отдельными модулями или комплектоваться из технологических узлов в блочном исполнении;
- осушенный ПНГ, поставляемый в систему магистральных газопроводов, должен удовлетворять требованиям технического регламента.
6.3.5.9 Параметры процесса осушки газа принимают в зависимости от принятой технологии осушки газа и технологического оборудования.
6.3.5.10 Потери осушителя (гликоля) устанавливают ПД или разработчиком оборудования осушки газа. Температуру регенерации осушителя поддерживают в соответствии с рекомендациями, указанными в паспорте осушителя (абсорбента).
6.3.5.11 Для месторождений нефти, расположенных в районах ММГ, охлаждение газа, поступающего в магистральный газопровод подземной прокладки, обеспечивают до температуры, не превышающей температуру грунта, в целях сохранения естественного состояния грунта.
6.3.5.12 Проектирование КС выполняют в соответствии с 6.3.13.
6.3.5.13 При проектировании технологических схем подготовки ПНГ, в которых происходят его нагрев (принудительно или за счет сжатия) и охлаждение, проводят пинч-анализ, направленный на увеличение теплообмена между охлаждаемым продуктом и нагреваемым сырьем.
6.3.6 Резервуары нефтегазоводяной смеси
6.3.6.1 Резервуары НГВС предусматривают:
- в качестве сырьевых для обеспечения УПН;
- в качестве технологических резервуаров для процесса предварительного сброса пластовой воды в соответствии с подтверждением технико-экономическим расчетом;
- для приема нефти, не отвечающей требованиям технического регламента.
При использовании резервуарного парка одновременно для нужд ЦПС (УПН) и головных сооружений магистрального транспорта суммарный объем резервуарных емкостей определяют с учетом совмещенного графика их работы.
В качестве резервуарных емкостей предусматривают стальные резервуары типа РВС.
6.3.6.2 Проектирование резервуаров НГВС выполняют согласно 6.3.7 с учетом нижеприведенных особенностей.
6.3.6.3 Для эффективного осуществления сброса пластовой воды, снижения технологических потерь легких углеводородов резервуары оснащают внутренними устройствами распределительной системы ввода нефтеводяной смеси, а также устройствами организации спокойного отбора нефти, исключающими перемешивание и захват газовой фазы при откачке резервуаров.
6.3.6.4 При проектировании РВС при соответствующем технико-экономическом обосновании в зависимости от климатических условий предусматривают теплоизоляцию. При необходимости подогрева используют избыточное тепло от технологического процесса или тепло от котельных в качестве альтернативы электрообогреву.
6.3.7 Резервуары добытой нефти
6.3.7.1 Резервуары добытой нефти (товарные резервуары) предусматривают для приема и хранения подготовленной нефти в объеме суточной производительности УПН или в соответствии с ТУ на подключение к системе магистральных нефтепроводов.
6.3.7.2 Разработку ПД резервуарных парков выполняют в соответствии с разделом 5, а также [8], [12], [22], ГОСТ 31385.
6.3.7.3 Тип резервуара устанавливают в проекте. Вертикальные стальные резервуары со стационарной крышей для хранения нефти оснащают системами сокращения выбросов в атмосферу (газоуравнительными системами, системами улавливания легких фракций или общей газоуравнительной линией со сбросом газовой среды через гидрозатвор на свечу рассеивания в атмосферу).
Газоуравнительную систему рекомендуется применять при совпадении опорожнения одного резервуара (резервуаров) и наполнения другого резервуара (резервуаров), что обеспечивает сокращение испарения углеводородов с поверхности нефти в резервуарах.
При аварийных ситуациях на ЦПС (УПН, ДНС) для аварийного приема нефти допускается применять резервуары, оборудованные дыхательными и предохранительными клапанами без газоуравнительной системы.
6.3.7.4 Конструкция резервуара, его характеристики и состав оборудования - в соответствии с ГОСТ 31385. Конструкция резервуара и устанавливаемое на нем оборудование, арматура, средства измерений и КИПиА обеспечивают безопасную эксплуатацию резервуаров при:
- наполнении, хранении и опорожнении;
- зачистке и ремонте;
- отстое и удалении подтоварной воды;
- отборе проб;
- измерении уровня, температуры, давления.
6.3.7.5 На резервуарах предусматривают оборудование:
а) системы контроля и управления;
б) системы пожарной сигнализации;
в) системы пожаротушения;
г) системы охлаждения;
д) системы сокращения выбросов в атмосферу;
е) защиты от коррозии.
6.3.7.6 Количество резервуаров определяют с учетом коэффициентов использования емкости резервуара по отношению к объему резервуара по строительному номиналу.
6.3.7.7 В проектной документации разрабатывают опросный лист с указанием характеристики резервуара, технологических и климатических данных, сейсмичности и типа фундамента. Приводят эскиз резервуара с показом размещения люков, патрубков, положения системы размыва, КИПиА, пробоотборного устройства, сифонного крана, дыхательных и предохранительных клапанов, вентиляционных патрубков, систем пожаротушения и систем охлаждения, типа лестницы, положения площадок обслуживания. Указывают требования к устройству крепления изоляции в соответствии с проектными решениями по теплоизоляции. Приводят высотное размещение люков, патрубков и КИПиА.
В опросном листе указывают метод изготовления резервуаров (полистовое или рулонное исполнение) согласно ГОСТ 31385.
6.3.7.8 Необходимость обогрева и наличие тепловой изоляции резервуара определяют в проекте.
6.3.7.9 Компоновка резервуаров, расстояния между стенками резервуаров, вместимость групп резервуаров и расстояния между группами, а также устройство обвалования с лестничными переходами - в соответствии с [8].
6.3.7.10 Максимальную производительность заполнения (опорожнения) резервуара, оборудованного дыхательными и предохранительными клапанами или вентиляционными патрубками, определяют с учетом максимально возможного расхода через них паровоздушной смеси. При этом расход паровоздушной смеси (воздуха) через все дыхательные клапаны или вентиляционные патрубки с огневыми предохранителями, установленными на резервуаре, не должен превышать 85% от их суммарной проектной пропускной способности.
6.3.7.11 Для минимизации процесса перемешивания нефти, сопровождающегося образованием паровоздушной смеси и статического электричества при заполнении резервуара, а также для организации отбора нефти без перемешивания и захвата паровоздушной смеси из резервуара при откачке резервуаров предусматривают успокоительные устройства на внутренних подводящих и отводящих трубопроводах.
6.3.7.12 Подключение РВС к трубопроводам выполняют через фланцевые соединения с задвижками для обеспечения возможности установки заглушек при выводе РВС в ремонт. Остальные соединения трубопроводов внутри каре резервуаров выполняют на сварке. Трубную обвязку резервуара рассчитывают на прочность с учетом внутреннего давления всех действующих нагрузок и учетом допустимой осадки резервуара в процессе его эксплуатации. Для компенсации и уменьшения нагрузок на патрубки резервуара до значений, не превышающих допустимые и указанные заводом-изготовителем, трубопроводная обвязка предусматривает компенсирующие устройства (пружинные опоры, систему компенсации нагрузок на резервуар, сильфонные компенсаторы).
6.3.7.13 Узлы с задвижками переключения РВС располагают с внешней стороны обвалования.
6.3.7.14 При оснащении РВС газоуравнительной системой на трубопроводе газоуравнительной системы предусматривают детонационно-стойкий огнепреградитель.
6.3.7.15 Не допускается транзитная прокладка трубопроводов через соседние группы резервуаров и их обвалования.
6.3.7.16 Для продувки трубопроводов резервуарного парка инертным газом или паром в начальных и конечных точках трубопровода предусматривают штуцеры с арматурой и заглушкой.
6.3.7.17 Резервуарные парки оснащают газоанализаторами ПДК и ДВК.
6.3.7.18 Для исключения проникновения нефтепродукта в грунт каре обвалования резервуарного парка обустраивают противофильтрационным экраном или оборудуют бетонным или песчано-цементным покрытием.
6.3.7.19 При размещении РВС на возвышенных участках местности по отношению к населенным пунктам, железнодорожным путям, смежным предприятиям и водоемам предусматривают мероприятия, исключающие возможность разлива нефти при аварии на территорию населенного пункта или предприятия, на пути железных дорог общей сети или в водоем.
6.3.7.20 В каждой группе наземных вертикальных резервуаров, располагаемых в два ряда и более, предусматривают заезды внутрь обвалования для передвижной пожарной техники, если с внутренних дорог и проездов резервуарного парка не обеспечивается подача огнетушащих средств в резервуары.
6.3.7.21 Освещение резервуарных парков осуществляют энергосберегающими прожекторами, выбор типа и параметров прожекторов проводят на основе технико-экономического обоснования. Необходимость применения взрывозащищенного исполнения определяют в проекте. Прожекторные мачты устанавливают на расстоянии не менее 10 м от стенки крайнего резервуара, вне обвалования или ограждающих стен. Рекомендуется прожекторные мачты применять с молниеприемниками.
6.3.7.22 В проекте предусматривают нанесение на наружную поверхность стенки резервуара надписей "Огнеопасно" и номера резервуара.
6.3.8 Резервуары пластовой воды
6.3.8.1 На площадке очистных сооружений пластовых, производственно-дождевых сточных вод предусматривают емкость для аварийных ситуаций (резервуар-накопитель), рассчитанную на прием пластовых и сточных вод на время ликвидации аварии на трубопроводах, транспортирующих воды на кустовые насосные станции, или остановки одной из этих КНС.
6.3.8.2 Емкость (резервуар) не предусматривают или принимают меньшего объема, когда по результатам технико-экономических расчетов в аварийных ситуациях возможна перекачка пластовых и сточных вод в резервуары НГВС, ближайшую КНС или систему поглощения.
Допускается применение резервуара пластовой воды для очистки сточных вод.
6.3.8.3 Проектирование резервуаров пластовой воды выполняют согласно 6.3.7, с учетом специфики оснащения резервуаров пластовой воды внутренними устройствами вывода уловленной нефти вместо системы удаления подтоварной воды, требований по пожаротушению при наличии пожароопасной среды.
6.3.9 Насосная перекачки нефтегазоводяной смеси
6.3.9.1 Нефтенасосные станции перекачки НГВС в зависимости от своего назначения предусматриваются:
- для технологических перекачек на установках подготовки нефти;
- для внутрирезервуарных перекачек продукции;
- для перекачек некондиционной нефти.
6.3.9.2 Защиту насосов от кавитации предусматривают согласно 6.3.10.6.
6.3.9.3 Насосные перекачки НГВС предусматривают при технологической необходимости в технологической схеме сооружений по подготовке нефти после блоков сепарации нефти, а также нефти после блока подготовки для возможности подачи на установку очистки от сероводорода и меркаптанов.
6.3.9.4 Производительность рабочих насосов для перекачки некондиционной нефти принимают равной 25% от суточного объема, поступающего в сырьевые резервуары УПН.
6.3.9.5 Устройство насосной перекачки НГВС выполняют в соответствии с 6.3.10.
6.3.9.6 При проектировании насосной перекачки НГВС возможно размещение насосов в блок-боксах в габаритах железнодорожного транспорта.
6.3.9.7 Возможно размещение коллекторов в машинном зале при условии установки арматуры аварийного отключения насосной вне помещения насосной на расстоянии от 3 до 50 м от стен насосной или оборудования наружного размещения.
6.3.10 Насосная перекачки добытой нефти
6.3.10.1 Насосные станции предусматривают для откачки добытой нефти с УПН.
6.3.10.2 В насосной добытой нефти размещают насосы внутрипарковой перекачки из резервуара в резервуар и откачки некондиционной нефти, насосы откачки пластовой воды. Разработку ПД насосной перекачки добытой нефти выполняют с учетом требований [11], а также в соответствии с разделом 5 и 6.3.1.
6.3.10.3 Насосные станции проектируют для изготовления и поставки блочными, автоматизированными.
6.3.10.4 Заказная документация включает принципиальную технологическую схему насосной и монтажно-технологический эскиз, на котором показывают размещение направления выхода коллекторов, размещение арматуры и оборудования.
6.3.10.5 Выбор типа и числа насосов проводят в зависимости от физико-химических свойств нефти и параметров перекачки (расчетного рабочего давления, производительности и режима перекачки).
В зависимости от типа насосов опросные листы на насосы предусматривают необходимость оснащения насосов следующими КИПиА:
- датчиками температуры подшипников с выводом информации по температуре, подающими сигнализацию и автоматически отключающими насосные агрегаты при достижении критической температуры на подшипниках;
- датчиками (преобразователями) давления для контроля давления на всасывающем и напорном трубопроводах насосов с выводом информации по давлению и сигнализации на АРМ оператора и автоматического отключения при превышении допустимых параметров.
Электродвигатели насосов также снабжают датчиками температуры подшипников, если таковые предусмотрены конструкцией завода-изготовителя.
Показания приборов передают в операторную. Параметры работы насосов регулируют как в ручном, так и в автоматическом режиме.
6.3.10.6 Оснащение насосных агрегатов системами контроля и защиты от превышения допустимых уровней вибрации и осевого смещения вала насосов определяют при проектировании на основании рекомендаций по эксплуатации завода - изготовителя насоса.
Информацию о состоянии вибрации и осевого смещения вала передают на АРМ оператора, а также на щит в машинном зале (при его наличии).
В опросных листах на насосы предусматривают величину максимального допустимого кавитационного запаса насоса с учетом превышения подпора на всасывающем патрубке насоса заданного допускаемого кавитационного запаса.
6.3.10.7 Производительность рабочих насосных агрегатов определяют по максимальному количеству нефти, поступающей на насосную станцию.
Суммарную производительность насосов принимают из расчета работы в течение 23 ч в сутки.
6.3.10.8 Количество резервных насосных агрегатов определяют в соответствии с 5.13.
6.3.10.9 Для регулирования производительности насосных агрегатов, работающих в постоянном режиме, рекомендуется применение ЧРП с подключением к АСУ ТП и выводом управления на пульт оператора. Применение ЧРП должно иметь технико-экономическое обоснование.
6.3.10.10 Трубопроводы обвязки насосов обеспечивают равномерное распределение перекачиваемой нефти на всасывании, имеют минимальную протяженность и гидравлическое сопротивление, исключают образование во всасывающих трубопроводах газовых мешков.
6.3.10.11 Насосы оснащают блокировками, исключающими пуск или прекращающими работу при отсутствии перекачиваемой жидкости в корпусе насоса.
6.3.10.12 Всасывающие трубопроводы насосов оснащают фильтрами и средствами контроля, обеспечивающими местный или дистанционный контроль загрязнения фильтров. Необходимость установки фильтров определяют в проекте.
6.3.10.13 Отключающую арматуру всасывающего и напорного трубопровода насоса размещают в машинном зале. В случае отклонения параметров работы насоса от режимных происходит автоматическое отключение насоса, срабатывание сигнализации и закрытие электроприводных задвижек.
6.3.10.14 На напорных трубопроводах насосов устанавливают обратные клапаны.
6.3.10.15 Всасывающий и напорный коллекторы размещают вне машинного зала и оснащают арматурой с дистанционным приводом, управляемой автоматически либо непосредственно оператором.
6.3.10.16 Трубопроводы для заполнения и опорожнения насосов подключают к дренажной емкости, расположенной за пределами помещения насосной.
6.3.10.17 Дренажную емкость насосной оснащают воздушником с огнепреградителем.
6.3.10.18 При наличии маслосистемы масляные блоки насосных агрегатов размещают в помещении машинного зала. Воздушные холодильники охлаждения масла и емкости масла размещают на наружной площадке и оборудуют обогревом.
6.3.10.19 Маслосистема насосных агрегатов обеспечивает возможность подачи смазки к подшипникам и уплотнениям в случае остановки насоса и электродвигателя на время выбега ротора до его полной остановки.
6.3.10.20 Пол насосной должен иметь уклон 0,003 в сторону трапа. Линию канализации трапа оснащают гидрозатвором и подключают к дренажной емкости.
6.3.10.21 Сбор утечек нефти от уплотнений насосов направляют в дренажную емкость опорожнения насосов.
6.3.10.22 В случае размещения насосных агрегатов под навесами площадь защитных боковых ограждений определяют в ПД с учетом розы ветров, степени занесения снегом и т.д.
6.3.10.23 Защитные боковые ограждения открытых насосных должны быть несгораемыми и по условиям естественной вентиляции не доходить до пола и покрытия (перекрытия) насосной не менее чем на 0,3 м.
6.3.10.24 Для проведения монтажных и ремонтных работ в насосных предусматривают ворота, размещаемые по осям насосных агрегатов и около ремонтной площадки.
6.3.10.25 Прокладка электрических кабелей, АСУ ТП, систем освещения и вентиляционных систем не должна перекрывать проходы, места монтажа и выкатки агрегатов, а также зоны работы грузоподъемных механизмов.
6.3.10.26 Высоковольтные двигатели оснащают устройствами плавного пуска при определении расчетом невозможности осуществления прямого пуска, если не предусмотрен частотно-регулируемый привод.
6.3.10.27 В насосных, размещаемых в закрытых зданиях и под навесами, используют стационарные ручные подвесные либо мостовые краны, монорельсы, исполнение которых должно соответствовать категории взрывоопасности помещения, с грузоподъемностью, рассчитанной на массу наиболее тяжелого узла агрегата. При необходимости грузоподъемные устройства оснащают площадками обслуживания. Для малогабаритного насосного оборудования грузоподъемность крана принимают по массе агрегата.
6.3.10.28 Для удобства демонтажа и монтажа насосных агрегатов рекомендуется предусматривать съемные выкатные устройства. Габариты ворот должны обеспечивать возможность монтажа и демонтажа агрегатов без разборки. Устройство фундаментов и система установки фундаментных болтов должны обеспечивать возможность демонтажа (монтажа) фундаментных болтов.
6.3.10.29 Межфланцевые заглушки-кольца для отключения оборудования входят в объем поставки.
6.3.11 Насосная перекачки пластовых и сточных вод
6.3.11.1 Насосные станции предназначены для перекачки как неочищенных, так и очищенных пластовых, производственных и поверхностных (дождевых) сточных вод.
Насосные станции проектируются блочными, автоматизированными, заводского изготовления. Компоновки насосных станций различного назначения определяют в ПД.
6.3.11.2 Выбор типа и числа насосов проводят в зависимости от физико-химических свойств жидкости и параметров перекачки (расчетного рабочего давления, производительности, наличия газа и режима перекачки). Защиту насосов от кавитации предусматривают согласно 6.3.10.6.
Производительность насосных агрегатов - согласно 6.3.10.7.
6.3.11.3 В насосной предусматривают сбор утечек от уплотнения насосов в дренажную емкость опорожнения насосов или в самотечную сеть производственно-дождевой канализации. Подключение к наружным сетям или к емкости осуществляют через гидрозатвор.
6.3.11.4 Устройство насосной перекачки пластовых и сточных вод при наличии взрывопожарной среды выполняют в соответствии с 6.3.10. Положения 6.3.10.20 и 6.3.10.21 применимы для перекачки неочищенных пластовых вод.
6.3.12 Системы измерения количества и параметров нефти и газа
6.3.12.1 Системы измерения количества и параметров нефти и попутного нефтяного газа (системы измерений) - техническое устройство, представляющее собою совокупность функционально объединенных СИ, предназначенных для измерения количественных значений параметров нефти, систем обработки информации и технологического оборудования. Системы измерений предназначены для автоматизированного измерения, определения, отображения (индикации), сбора, регистрации и архивирования результатов измерений.
6.3.12.2 Результаты измерений, полученные с систем измерений, используют для формирования отчетных документов, составляемых при добыче, транспортировке, переработке, хранении и потреблении измеряемой среды.
6.3.12.3 Системы СИКН и СИКНС, предназначенные для измерений в сферах государственного регулирования, должны соответствовать требованиям законодательства Российской Федерации в области обеспечения единства измерений.
6.3.12.4 Порядок осуществления учета НГВС, подготовленной нефти, а также фактических потерь при ее добыче организациями, осуществляющими добычу нефти и газа, установлен в [4].
6.3.12.5 Состав СИКН, применяемых в сфере государственного регулирования обеспечения единства измерений, технические и метрологические характеристики СИ, оборудования и системы обработки информации, входящие в СИКН, применяемых в сфере государственного регулирования обеспечения единства измерений, должны соответствовать ГОСТ 34396, [23], входящих в СИКНС - [24]. Необходимые расчеты и выбор технологического оборудования, СИ и материалов осуществляют на стадии разработки технического задания.
6.3.12.6 Структура СИКН и СИКНС:
- основной состав технологической части:
а) блок ИЛ;
б) блок измерения качества;
- в состав технологической части могут входить также:
а) блок фильтров;
б) поверочная установка;
в) узел регулирования давления;
г) узел регулирования расхода через поверочную установку;
д) узел подключения передвижной поверочной установки;
е) технологические и дренажные трубопроводы;
ж) пробозаборное устройство;
и) дренажные емкости учтенной и неучтенной нефти.
6.3.12.7 Технические характеристики выбранного оборудования, а также технические и метрологические характеристики СИ должны обеспечивать необходимую точность измерений при заданных технологических режимах работы СИКН (СИКНС) и характеристиках нефти.
6.3.12.8 При выборе места установки преобразователей расхода на измерительном трубопроводе соблюдают требования заводов-изготовителей к длинам прямых участков, указанным в эксплуатационной документации.
6.3.12.9 Система сбора и обработки информации обеспечивает автоматизированное выполнение функции сбора, обработки, отображения, регистрации информации по учету нефти и управление режимами работы СИКН (СИКНС).
6.3.12.10 Диаметры входного и выходного коллекторов определяют в проекте на максимальный расход нефти через СИКН (СИКНС) с учетом допускаемой скорости потока не более 4 м/с для промысловых нефтепроводов. В любом случае диаметр входного и выходного коллекторов СИКН (СИКНС) должен быть не менее диаметра магистрального, промыслового или технологического нефтепровода при условии отсутствия на данном участке нефтепровода подключений от других источников.
6.3.12.11 Техническое задание и проект на СИКН (СИКНС), используемые в сферах государственного регулирования, подлежат метрологической экспертизе в аккредитованных на данный вид деятельности органах в установленном порядке.
6.3.12.12 Проектирование СИКГ, применяемых для измерений в сферах государственного регулирования, должно соответствовать требованиям законодательства Российской Федерации в области обеспечения единства измерений.
6.3.12.13 Порядок осуществления учета добытого, транспортируемого, перерабатываемого, хранимого и потребляемого ПНГ, а также фактических потерь при добыче организациями, осуществляющими добычу нефти и газа, установлен в [25].
6.3.12.14 Классификацию СИКГ выполняют согласно ГОСТ Р 8.733 на категории и классы, исходя из производительности и назначения.
6.3.12.15 В составе ПД на СИКГ разрабатывают ТТ для выбора заказчиком разработчика и поставщика СИКГ.
Перечень данных для включения в ТТ приведен в приложении А ГОСТ Р 8.733-2011.
6.3.12.16 Требования к составу, оснащению СИКГ устанавливают в ТТ.
Структура СИКГ:
- преобразователь расхода (при необходимости проведения контроля метрологических характеристик предусматривают контрольный преобразователь расхода);
- преобразователь давления;
- преобразователь температуры;
- плотномер (если плотность газа определяется непосредственно в СИКГ);
- поточный хроматограф (при необходимости);
- анализатор точки росы по воде и углеводородам (при необходимости);
- СОИ;
- технологическая часть (ИЛ с прямолинейными участками, запорная арматура, струевыпрямитель, пробоотборное устройство, блок фильтров, шумопоглотитель, регулятор давления, байпасные, дренажные, продувные линии);
- система промышленной безопасности (системы пожаротушения и пожарной сигнализации, система контроля загазованности, система электроснабжения и заземления).
Состав СИКГ определяют на этапе разработки ТТ.
6.3.12.17 Длины прямых участков измерительного трубопровода до и после расходомера соответствуют требованиям эксплуатационной документации завода-изготовителя. Потери давления на расходомере газа не должны приводить к изменению фазового состояния газа.
6.3.12.18 При использовании в составе СИКГ турбинных, ротационных, вихревых расходомеров газа при проектировании руководствуются ГОСТ Р 8.740. При использовании ультразвуковых расходомеров - ГОСТ 8.611.
6.3.12.19 СИ давления и температуры размещают на прямолинейных участках, длины которых регламентированы эксплуатационной документацией и/или методиками измерений.
Для измерений абсолютного давления с использованием датчиков избыточного давления в случае размещения ИЛ СИКГ в закрытом помещении с кондиционированием атмосферное давление измеряют в месте расположения датчика избыточного давления.
Глубина погружения преобразователя температуры или его защитной гильзы (при ее наличии) в трубопровод составляет от 0,3D до 0,7D, где D - внутренний диаметр ИЛ, мм. При этом обеспечивают минимальное перекрытие проходного сечения трубопровода.
ИЛ оборудуют показывающими СИ для местного отображения давления и температуры, для проведения в случае необходимости контроля показаний датчиков давления и температуры.
6.3.12.20 Рекомендуемый состав СОИ:
- вычислитель;
- компьютер или промышленный сервер;
- шина сбора данных и управления, преобразователи интерфейсов и т.д.;
- принтер тревог и отчетов;
- дисплей;
- АРМ;
- контроллеры;
- система передачи данных на верхний уровень;
- источник бесперебойного электропитания.
6.3.12.21 Вычислители автоматически определяют объемный расход и объем газа, приведенный к стандартным условиям, формируют и сохраняют архивы за установленные отчетные периоды измерений, осуществляют регистрацию нештатных ситуаций.
Алгоритмы и программы расчета плотности газа в стандартных и рабочих условиях и коэффициента сжимаемости, применяемые в вычислителе, учитывают особенности физико-химических показателей газа и соответствуют существующим в данной области нормативным документам.
Подключение и конфигурирование параметров вычислителей выполняют в соответствии с эксплуатационной документацией.
6.3.12.22 Для СИКГ, на вход которых направляют не прошедший осушку попутный нефтяной газ, при необходимости предусматривают обогрев и теплоизоляцию надземных трубопроводов для исключения понижения температуры газа и конденсации водяных паров и углеводородов.
6.3.12.23 В зависимости от климатических условий и по требованию заказчика компоновка СИКГ поставляется изготовителем на рамном основании и размещается под навесом или на открытой площадке, в отдельных блок-боксах или в зданиях легких металлических конструкций. Климатические условия, характеристики энергоснабжения, допустимые напряженности электромагнитных полей, уровни индустриальных радиопомех и вибрации должны соответствовать требованиям нормативной документации и эксплуатационной документации завода-изготовителя на средства измерений и оборудование, используемое в составе СИКГ.
6.3.12.24 СИКГ рекомендуется оснащать средствами малой механизации, позволяющими проводить смену и обслуживание оборудования массой более 30 кг.
6.3.12.25 Техническое задание и ПД на СИКГ, предназначенные для измерений в сферах государственного регулирования, подлежат обязательной метрологической экспертизе. Метрологическую экспертизу проектов проводят органы, аккредитованные на право проведения метрологической экспертизы в соответствии с [26]. Порядок проведения метрологической экспертизы установлен в [27] и [28].
6.3.13 Компрессорная станция перекачки газа
6.3.13.1 КС предназначены для компримирования ПНГ в составе сооружений по ПНГ к транспортированию на ГПЗ или другим потребителям.
6.3.13.2 Состав технологических сооружений, в том числе и выбор типа компрессорного оборудования и размещения, в ПД обосновывают технико-экономическими расчетами.
6.3.13.3 Устройство КС - в соответствии с разделом 5 и 6.3.1.
6.3.13.4 Для оборудования КС применяют:
- центробежные компрессоры;
- поршневые компрессоры;
- винтовые компрессоры.
Тип компрессорного агрегата определяют на основании технико-экономического обоснования. Основными критериями для выбора компрессорного агрегата являются производительность и давление на выходе компрессора.
6.3.13.5 При проектировании КС выбирают компрессор центробежного типа с приводом от газовой турбины или электроприводом.
Возможность применения электропривода или применение газопотребляющего привода определяют в зависимости от инфраструктуры (наличие внешнего электроснабжения или наличие источника газоснабжения) на основании технико-экономического обоснования.
6.3.13.6 Для регулирования минимальной производительности компрессора предусматривают линию перепуска газа с нагнетания на прием компрессора, при этом максимально используются энергосберегающие методы регулирования за счет изменения частоты вращения привода, использования современных автоматизированных антипомпажных систем.
6.3.13.7 Каждый компрессор отключают запорной арматурой, имеющей дистанционный привод с ручным дублированием.
6.3.13.8 Компрессорный агрегат оснащают оборудованием для пуска, работы и остановки, которое устанавливают на рамном основании компрессора и привода. Вспомогательное специальное оборудование для обслуживания компрессорного агрегата также входит в объем поставки.
6.3.13.9 Мощность газотурбинного привода компрессора устанавливают с запасом от 15 до 20% от номинально потребляемой мощности компрессора в зависимости от климатической зоны, места установки для обеспечения перекачки необходимого объема газа в летний период эксплуатации.
6.3.13.10 Технологическая схема КС обеспечивает:
- очистку попутного нефтяного газа от механических примесей и жидкости;
- компримирование ПНГ заданной производительности и до заданного давления;
- систему антипомпажного регулирования (для центробежного компрессора) в соответствии с требованиями завода - изготовителя оборудования и проектной документации;
- охлаждение ПНГ (межступенчатое и концевое) на аппаратах воздушного охлаждения;
- автоматический запуск и остановку КС, безаварийную работу с поддержанием технологических проектных параметров и автоматическую аварийную остановку компрессорного агрегата с переходом на работу резервного агрегата;
- аварийную автоматическую остановку КС с автоматическим переводом попутного нефтяного газа в факельный коллектор;
- автоматическую работу вспомогательных систем и оборудования;
- безаварийную работу систем автоматики с передачей информации в операторную;
- работу вспомогательных систем в регламентном режиме и при аварийных ситуациях;
- возможность ведения ремонтных работ на нерабочем агрегате без остановки работающих агрегатов при размещении в едином машинном зале.
6.3.13.11 На приеме каждой ступени компрессии предусматривают установку межфланцевой кассеты с сеткой для исключения проникновения во всасывающую часть посторонних предметов. Кассета должна быть съемной. Сетку оснащают прибором измерения перепада давления с выводом показаний в операторную.
6.3.13.12 На приеме КС предусматривают сепаратор с автоматическим отводом конденсата. Сепаратор оборудуют световой и звуковой сигнализацией, а также блокировкой, производящей остановку компрессора при достижении предельно допустимого уровня жидкости в сепараторе.
6.3.13.13 Каждую ступень центробежного компрессора оснащают устройством антипомпажного регулирования, не допускающим уменьшение величины потока газа, протекающего через данную ступень ниже заданного значения. Регулирование работы антипомпажного клапана осуществляют системой управления по данным о расходе газа каждой ступени. Антипомпажный клапан обеспечивает подачу во всасывающую линию охлажденного газа, отбираемого из газопровода после сепаратора. Каждую ступень компримирования оснащают клапаном байпаса, обеспечивающим поступление минимального потока попутного нефтяного газа в корпус компрессора при отключении компрессора до его полной остановки.
6.3.13.14 Компрессорный агрегат оснащают блокировкой на отключение при превышении предельно допустимых рабочих параметров и нарушении в работе системы смазки, что включают в требование в заказной документации.
6.3.13.15 Компрессорный агрегат оснащают датчиками вибрации электродвигателя (при наличии) компрессора, датчиками осевого смещения валов компрессора, датчиками температуры подшипников электродвигателя (при наличии) компрессора. Информация от датчиков также передается в операторную.
6.3.13.16 В машинном зале КС допускается располагать обратные предохранительные клапаны, регулирующие клапаны антипомпажной защиты, запорные арматурные узлы дренажных линий и отвода конденсата.
В случае проектирования КС по агрегатной схеме обвязки компрессоров отдельными технологическими линиями с полным комплектом технологического оборудования на линии (от приемного сепаратора до концевого сепаратора) установку отключающей арматуры для каждой линии по основному газопроводу предусматривают только в начале и в конце каждой линии.
При коллекторной схеме обвязки компрессоров на выкиде каждой ступени сжатия после обратного клапана устанавливают предохранительный клапан, срабатывающий при давлении, превышающем рабочее на 10%; для удаления ПНГ из компрессоров при их ревизии и ремонте на нагнетательном трубопроводе каждой ступени компрессора между отключающей арматурой и цилиндром предусматривают продувочную свечу с установкой на ней запорной арматуры высокой степени герметичности, класса А по ГОСТ 9544. При агрегатной схеме обвязки компрессоров предохранительный клапан устанавливают на нагнетательном трубопроводе последней ступени.
6.3.13.17 Для поршневых компрессоров при наличии нескольких цилиндров одной ступени сжатия компрессора допускается сброс ПНГ проводить на одну общую для них свечу.
Допускается объединение сброса ПНГ на одну свечу от группы компрессоров с одинаковыми по давлению ступенями сжатия.
Отвод ПНГ с клапанов и свечей проводят за пределы компрессорного помещения.
Положение выпусков от свечей располагают на безопасном расстоянии от забора вентиляционного воздуха и воздухозаборных устройств приводов компрессоров. Устройство продувочных свечей - в соответствии с 6.3.1.18.
6.3.13.18 Дренажные системы автоматического действия должны иметь собственную дренажную емкость и быть независимыми от дренажной системы ручного опорожнения оборудования.
6.3.13.19 На выкидном газопроводе каждого центробежного компрессора или ступени компримирования устанавливают обратный клапан. Обратный клапан также устанавливают после каждого сепаратора при условии выпадения конденсата. Обратный клапан устанавливают на линии продувки в факельный коллектор до арматуры с дистанционным приводом.
6.3.13.20 Приемные и нагнетательные газовые коллекторы компрессоров располагают вне помещения компрессоров. При этом прокладка должна быть надземной и иметь уклон, обеспечивающий их самотечное опорожнение от конденсата.
6.3.13.21 Для разгрузки оборудования и трубопроводов КС от давления и в системе аварийного сброса ПНГ газа на факельную систему устанавливают быстродействующую отсечную арматуру с дистанционным управлением и временем срабатывания, исключающим опасное развитие возможной аварии.
6.3.13.22 Фланцевые соединения, рассчитанные на рабочее давление 10 МПа и более, заключаются в защитные кожухи.
6.3.13.23 Для трубопроводов сброса с предохранительных клапанов и систем продувки оборудования на свечи рассеивания определяют температуры, достигаемые трубопроводом при дросселировании ПНГ за счет дроссель-эффекта. При достижении трубопроводами температур ниже минус 40 °C необходимо арматуру сброса давления, предохранительные клапаны, трубы и детали трубопроводов предусматривать соответствующего материального исполнения.
6.3.13.24 Вспомогательные трубопроводы (топливные, масляные, дренажные, продувочные, сбросные) проектируют на расчетное давление соответствующих аппаратов и трубопроводов.
6.3.13.25 Все трубопроводы КС рассчитывают на прочность в соответствии с расчетными режимами согласно ГОСТ 32388. Расчетные режимы работы и расчетные схемы должны отвечать условиям эксплуатации. Нагрузки на штуцере агрегатов и оборудования не должны превышать величины, установленные заводом-изготовителем для заданного режима эксплуатации.
6.3.13.26 Охлаждение ПНГ между ступенями сжатия и после компрессоров проводят воздухом, водой или антифризом. Способ охлаждения ПНГ обосновывают в ПД.
6.3.13.27 Каждый компрессорный агрегат оснащают системой управления. Систему управления компрессорным агрегатом интегрируют с системой управления КС и технологического комплекса, в систему которого включена КС.
6.3.13.28 Для контроля за технологическим процессом в проекте КС предусматривают приборы контроля давления, температуры, расхода, нарушения систем уплотнения.
6.3.13.29 Для работы газотурбинного или газопоршневого привода компрессора предусматривают узел подготовки топливного газа, включающий регулятор давления с предохранительным клапаном, фильтр со 100%-ным резервом, сепаратор, отключающую арматуру. В системе подготовки топливного газа предусматривают устройство, перекрывающее подачу топливного газа, если свойства топливного газа или его параметры выходят за пределы заданных.
6.3.13.30 Скорость ПНГ в приемных и нагнетательных коллекторах и газопроводах, соединяющих компрессоры с коллекторами, рекомендуют принимать по таблице 1.
6.3.13.31 В машинном зале КС и на наружной площадке предусматривают разводку инертного газа.
6.3.13.32 Продувку инертным газом направляют на свечи рассеивания. Продувку оборудования с отличными величинами давлений направляют на отдельные свечи рассеивания.
6.3.13.33 Для повышения надежности работы и обслуживания оборудования КС рекомендуют установку ресиверов воздуха КИПиА и ресиверов инертного газа.
6.3.13.34 Емкость склада свежего масла должна содержать не менее чем 30-суточный запас масла, но не менее объема, необходимого для полной замены масла в одной из компрессорных установок, входящих в состав КС. Для труднодоступных районов с сезонными ограничениями доставки грузов объем склада рассчитывают на временной период, в течение которого доставка грузов на установку невозможна.
6.3.13.35 Размер емкости для слива отработанного масла выбирают из условия вместимости в нее объема масла, поступающего из системы одного компрессора. Емкости свежего и отработанного масла располагают вне здания компрессорного цеха.
6.3.13.36 Технологическая схема пункта приема и откачки масла обеспечивает:
- прием свежего масла в емкости склада;
- подачу чистого масла в компрессорный цех;
- прием отработанного масла из компрессорного цеха на склад масла;
- регенерацию отработанного масла (необходимость определяется проектным решением);
- выдачу масла потребителю.
6.3.13.37 Для обеспечения требуемого качества смазывающего масла предусматривают блок подготовки масла, оснащаемый фильтрами с соответствующими фильтрующими элементами.
6.3.13.38 Трубопроводы масляной системы предусматривают из легированной стали. Конструкция масляных трубопроводов обеспечивает удобство их чистки.
6.3.13.39 Маслосистема компрессорных агрегатов обеспечивает возможность подачи смазки к подшипникам и уплотнениям в случае остановки привода компрессора на время выбега ротора до его полной остановки.
6.3.13.40 Насосы подачи масла на компрессоры и приводы должны иметь 100%-ный резерв.
6.3.13.41 Для вспомогательного оборудования и механизмов, режимы работы которых требуют более частых остановок, чем это определено регламентом работы КС, принимают 100%-ный резерв только в том случае, если их выход из строя приведет к остановке КС.
6.3.13.42 Размер расходной емкости масла соответствует объему масла в картере наибольшего компрессора. Расходную емкость устанавливают в здании КС в отдельном помещении, выгороженном противопожарными перегородками без проемов и имеющем выход непосредственно наружу. При установке компрессоров, для которых эти емкости поставляются заводом-изготовителем в комплекте с машиной, расходную емкость не предусматривают.
6.3.13.43 Промежуточную емкость для отработанного масла устанавливают подземно вблизи КС.
6.3.13.44 В проекте предусматривают расчет выбросов выхлопных газов от газотурбинных и газопоршневых двигателей.
6.3.13.45 Для снижения уровня шума от работы центробежных компрессоров рекомендуется всасывающие и нагнетательные газопроводы пусковых контуров изолировать звукопоглощающей изоляцией.
6.3.13.46 Эквивалентный уровень звукового давления не должен превышать 80 дБа на расстоянии 1 м и на высоте 1,5 м от компрессорного агрегата.
6.3.13.47 Горячие трубопроводы КС должны иметь теплоизоляцию от ожогов с допускаемой температурой на поверхности изоляции не более 45 °C в машинном зале и не более 55 °C на наружной площадке.
6.3.13.48 Размещение технологического оборудования, трубопроводов, арматуры и приборов должно обеспечивать беспрепятственный доступ для осмотра и ремонта. Обслуживающие площадки станции проектируют только с маршевыми лестницами с уклоном не более 45°. Устройство лестниц с большим уклоном или вертикальных стремянок допускается только к местам, не требующим ежедневного осмотра.
6.3.13.49 Заказная документация включает требование о выполнении в объеме поставки компрессорного агрегата, кабельных проводок в пределах модулей установки или поставляемого оборудования от датчиков и исполнительных механизмов до соединительных коробок на границе установки. Компрессоры размещают в отапливаемых помещениях или укрытиях (боксах). Размещение компрессоров на открытых площадках не допускается.
6.3.13.50 Пол помещения, где размещаются компрессоры, должен быть не менее чем на 0,15 м выше планировочных отметок прилегающей территории и выполнен из безыскрового материала.
6.3.13.51 Компрессоры устанавливают на фундаментах, не связанных с фундаментами другого оборудования и стенами здания.
6.3.13.52 При размещении в машинном зале более одного компрессора расстояние между выступающими элементами компрессорного агрегата должно быть не менее 1,5 м, ширина основного прохода по фронту обслуживания - не менее 1,5 м, расстояние до стен - не менее 1,0 м.
6.3.13.53 В КС разрабатывают компоновочные решения, позволяющие по возможности использовать передвижные подъемно-транспортные средства. В случае невозможности использования передвижных средств используют стационарные ручные подвесные либо мостовые краны, монорельсы, исполнение которых должно соответствовать категории взрывоопасности помещения, с грузоподъемностью, рассчитанной на массу наиболее тяжелого узла агрегата.
6.3.13.54 Компрессорный агрегат должен иметь в комплекте поставки паспорт на компрессор, разрешительную документацию на использование на территории Российской Федерации и инструкцию по монтажу и эксплуатации. Требование к документации на компрессор должно быть отражено в ПД.
6.3.14 Технологические трубопроводы
6.3.14.1 Проектирование технологических трубопроводов выполняют в соответствии с ГОСТ 32569.
Межплощадочные и межцеховые технологические трубопроводы проектируют с учетом общих планировочных решений генплана сооружений и взаимной увязки сетей.
6.3.14.2 Технологические трубопроводы, перекачивающие насыщенные растворы МЭА, щелочи и метанола, проектируют как трубопроводы первой категории согласно ГОСТ 32569.
6.3.14.3 За рабочие параметры транспортируемого вещества принимают:
- рабочее давление - согласно ГОСТ 32569;
- рабочую температуру, равную максимальной положительной или минимальной отрицательной температуре транспортируемого вещества, установленной технологической схемой.
6.3.14.4 Трубопроводы топливного газа, поставляющие топливный газ от блоков подготовки топливного газа до газоиспользующего оборудования, проектируют в соответствии с СП 62.13330.2011.
6.3.14.5 Выбор материального исполнения - в соответствии с 6.17.
6.3.14.6 На вводах трубопроводов с горючими, взрыво- и пожароопасными веществами перед технологическими установками на площадках ЦПС, УПН, УПСВ, ДНС, УПГ, КС предусматривают отключающую арматуру с дистанционным управлением и ручным дублированием. Расстояние от отключающей арматуры до установок, а также вид отключающей арматуры принимают согласно ГОСТ 32569.
6.3.14.7 При проектировании диаметры трубопроводов определяют в результате гидравлического расчета с учетом конкретных условий их работы (производительности технологических установок, вязкости и плотности транспортируемого продукта, располагаемого напора и т.д.).
6.3.14.8 Скорость движения продуктов по трубам при определении диаметров технологических трубопроводов принимают по данным таблицы 1.
6.3.14.9 Выполнение гидравлического расчета трубопроводов обязательно для технологических трубопроводов, обеспечивающих непрерывность работы технологических процессов добычи нефти и ее хранения, за исключением технологических трубопроводов небольшой протяженности с минимальными потерями давления, диаметры которых определяют по расходу и скорости потока.
6.3.14.10 Тепловую изоляцию трубопроводов, обеспечивающих технологический процесс, предусматривают для сохранения температуры перекачиваемой жидкости либо газа, предотвращения их застывания, конденсации, испарения, образования гидратных пробок, отложения парафина, смол и т.п.
Если тепловая изоляция не обеспечивает указанных требований, трубопроводы предусматривают с обогревающими элементами (электрообогрев или теплоспутники) в общей изоляции. Для электрообогрева предусматривают автоматизацию с датчиком автоматического включения при снижении температуры перекачиваемой среды ниже установленных значений в конечной точке.
6.3.14.11 Обогревающие элементы предусматривают для наружных трубопроводов, которые обеспечивают периодическую подачу конденсирующихся или замерзающих продуктов, а также для всех трубопроводов, транспортирующих застывающие среды, независимо от режима их подачи и места расположения трубопровода. В качестве обогревающих систем рекомендуется устройство электрообогрева с датчиком автоматического включения при снижении температуры перекачиваемой среды ниже установленных значений в конечной точке (в соответствии с 6.10).
6.3.14.12 Трубопроводы, принимающие в процессе эксплуатации температуры, отличающиеся от температур при монтаже, рассчитывают на компенсацию с уточнением конфигурации, размещением и установлением типа опор, устройством предварительных стяжек, а также оснащают при необходимости компенсационными вставками. Для трубопроводов большой протяженности рекомендуется применение П-образных и Z-образных компенсаторов.
6.3.14.13 Для обеспечения работы компенсаторов, а также для ограничения нежелательных перемещений трубопроводов предусматривают установку неподвижных опор, упоров или других ограничителей перемещений трубопроводов.
6.3.14.14 Опоры технологических трубопроводов применяют хомутового типа корпусные.
6.3.14.15 Фланцевые соединения технологического оборудования, требующие перекрытия потока транспортируемой среды для периодического технического освидетельствования при проведении ППР, ТО и других работ, оснащают межфланцевыми кольцами и заглушками с хвостовиками или поворотными заглушками.
6.3.14.16 Технологические трубопроводы должны иметь опознавательную окраску, предупреждающие знаки и маркировочные щитки в соответствии с ГОСТ 14202.
6.3.14.17 При использовании пара для продувки трубопроводов или горячей воды для их промывки температурную деформацию определяют с учетом температуры пара или горячей воды.
6.3.14.18 Условные давления и соответствующие им наибольшие рабочие давления по арматуре и деталям трубопроводов в зависимости от марки стали и рабочей температуры транспортируемой среды определяют по ГОСТ 356.
6.3.14.19 Прокладку технологических трубопроводов, как правило, выполняют с использованием низких и высоких отдельно стоящих опор. Высоту (расстояние от планировочной отметки земли до верха траверсы) отдельно стоящих опор и эстакад принимают: низких опор от 0,3 до 1,2 м кратной 0,3 м, в зависимости от планировки земли и уклонов трубопроводов; высоких отдельно стоящих опор и эстакад - кратной 0,6 м.
6.3.14.20 Конструкции отдельно стоящих опор и эстакад под трубопроводы с легковоспламеняющимися горючими веществами, жидкостями и газами проектируют несгораемыми.
6.3.14.21 Расстояние между отдельно стоящими опорами под трубопроводы принимают, исходя из расчета труб на прочность и жесткость, как правило, не менее 6 м и кратным 3 м. Допускается принимать шаг опор других размеров в местах подхода трассы к зданиям и сооружениям, а также в местах пересечения с автомобильными, железными дорогами и другими коммуникациями.
6.3.14.22 В продольном направлении отдельно стоящие опоры и эстакады разбивают на температурные блоки, длина которых не превышает предельных расстояний между температурными швами.
6.3.14.23 Продольную устойчивость отдельно стоящих опор и эстакад обеспечивают за счет анкерной опоры в каждом температурном блоке.
6.3.14.24 Отдельно стоящие опоры и эстакады рассчитывают на нагрузки от веса трубопроводов с изоляцией, транспортируемого продукта, людей и ремонтных материалов на обслуживающих площадках и переходных мостиках, отложений производственной пыли, на горизонтальные нагрузки и воздействия от трубопроводов, а также от действия льда и ветровых нагрузок.
6.3.14.25 Расчет строительных конструкций отдельно стоящих опор и эстакад проводят как плоских конструкций. При необходимости проведения уточненных расчетов и учета дополнительных факторов расчет строительных конструкций отдельно стоящих опор и эстакад проводят как пространственных систем, с учетом их совместной работы с трубопроводами.
6.3.15 Факельная система ЦПС
6.3.15.1 Факельную систему ЦПС (УПН) предусматривают для следующих видов сбросов горючих газов и паров:
- постоянных;
- периодических при освобождении установок или отдельных аппаратов перед пропаркой, продувкой, ремонтом, а также при пусконаладочных работах;
- аварийных - при сбросе с предохранительных клапанов или сбросе при аварийном отключении оборудования или технологических установок.
6.3.15.2 По своему назначению факельные системы подразделяют на:
- общие, принимающие сбросы от группы технологически не связанных производств (установок) при совместимости сбросов в факельную систему;
- отдельные, обслуживающие одно производство, один цех, одну технологическую установку, один склад или несколько технологических блоков, которые связаны единой технологией в одну технологическую нитку и могут останавливаться одновременно (единый источник сброса);
- специальные, принимающие сбросы, которые не могут быть направлены в общие и отдельные системы.
Потери давления в факельных системах при максимальном сбросе не превышают:
- для систем высокого давления, в которые направляются аварийные сбросы газов и паров, - 0,02 МПа на технологической установке и 0,08 МПа на участке от технологической установки до выхода из оголовка факельного ствола;
- для систем низкого давления - 0,05 МПа от технологической установки до выхода из оголовка факельного ствола.
Для отдельных и специальных факельных систем потери давления не ограничиваются и определяются условиями безопасной работы подключенных к ним аппаратов.
6.3.15.3 Пропускную способность факельных систем принимают равной:
- пропускную способность отдельной и специальной факельной системы - сумме постоянных сбросов от всех подключенных технологических блоков и аварийного сброса от одного блока с наибольшей величиной этого сброса;
- пропускную способность общей факельной системы:
а) при постоянных и периодических сбросах - на сумму периодических (с коэффициентом 0,2) и постоянных сбросов от всех подключенных технологических установок, но не менее чем на сумму постоянных сбросов и максимального периодического сброса (с коэффициентом 1,2) от установки с наибольшей величиной этого сброса;
б) при аварийных сбросах - на сумму аварийных сбросов (с коэффициентом 0,25) от всех подключенных установок, но не менее чем на величину максимального аварийного сброса (с коэффициентом 1,5) от установки с наибольшей величиной этого сброса.
Конструкция факельной установки - в соответствии с ГОСТ Р 53681.
6.3.15.4 По каждому источнику сброса газов и паров, направляемых в факельные системы, в том числе расхода затворного газа и газа на дежурные горелки, определяют расход установкой СИКГ. Состав СИКГ определяют, исходя из применяемого метода измерений и требований методики измерений для выбранного преобразователя расхода, в соответствии с 6.3.12 и ГОСТ Р 8.733.
6.3.15.5 Количество факельных стволов должно соответствовать количеству факельных систем. Расстояние между факельными стволами определяют из условия безопасного ремонта одного из них при работающем соседнем факеле.
6.3.15.6 Для минимизации территории под факельные установки в проектах предусматривают совмещенные факельные установки, объединяющие в одной конструкции два факельных ствола - низкого и высокого давления.
6.3.15.7 Факельные трубопроводы имеют надземную прокладку, обогреты и теплоизолированы, включая узлы предохранительных клапанов и присоединительные трубопроводы на технологическом оборудовании наружного размещения.
6.3.15.8 Для исключения дополнительных узлов сбора конденсата в местах возможного пересечения факельных трубопроводов с дорогами рекомендуется прокладка трубопроводов над дорогами на высоте не менее 5 м с соблюдением общего уклона в сторону сепарационно-дренажного узла.
6.3.15.9 Разработка и поставка факельных установок рекомендуется комплектной, без каких-либо доработок в проекте или на месте строительства, за исключением сборки, осуществляемой поставщиком или под его руководством.
6.3.15.10 Опросные листы на факельную установку, разрабатываемые в ПД, включают характеристики сбрасываемых на факел газов и требование о принятии мер разработчиком и поставщиком факельной установки к недопущению замерзания топливных трубопроводов, а также исключение образования ледяных отложений в факельном стволе в зимний период эксплуатации.
6.3.15.11 Опросные листы включают требование о наличии паспорта, поставляемого с факелом. Паспорт включает расчетный срок эксплуатации оголовка факела.
6.3.15.12 Высота и место установки факельных стволов определяют в зависимости от топографии площадки, расположения окружающих сельскохозяйственных земель, предприятий и жилых поселков, интенсивности преобладающего направления ветров, учета требований пожарной безопасности и результатов расчетов по плотности теплового потока и рассеиванию в атмосфере вредных веществ, содержащихся в продуктах сгорания.
6.3.15.13 Сбросы газов (с относительной плотностью по воздуху не более 0,8) допускается направлять на свечу рассеивания. Выбор направления периодических и аварийных сбросов легких газов (через продувочную свечу в атмосферу или на факел) должен обосновываться расчетом рассеивания вредных веществ.
6.3.15.14 Для сжигания ПНГ с содержанием сероводорода более 8% объемных предусматривают отдельную факельную систему.
6.3.15.15 Диаметр факельного ствола принимается равным диаметру подводящего факельного газопровода. Допускается принимать диаметр ствола факела меньше диаметра подводящего трубопровода при необходимости обеспечения минимальных потерь давления сбрасываемого газа и увеличения скорости его выброса из факельного ствола, а также при других условиях сброса, с обязательным обоснованием этого решения.
6.3.15.16 В качестве устройства сбора конденсата факельных систем предусматривают для каждой факельной системы установку сепаратора на факельном трубопроводе перед факельной установкой и дренажной емкости.
6.3.15.17 Факельные сепараторы систем низкого и высокого давлений рассчитывают на максимально возможные аварийные сбросы в системы.
6.3.15.18 Дренажные емкости рассчитывают на возможное поступление жидкой фазы из факельных сепараторов в период аварийного сброса.
6.3.15.19 Для опорожнения дренажных емкостей устанавливают в каждой емкости по два погружных насоса - рабочий и резервный.
6.3.15.20 Размещение сепарационно-дренажного узла предусматривают перед факелом ЦПС (УПН) с учетом безопасной плотности теплового потока от факельной установки.
6.3.15.21 При прокладке факельного газопровода на низких опорах допускается подземная установка дренажной емкости (конденсатосборника), а в случае прокладки факельных газопроводов на стойках - только наземная.
6.3.15.22 Расчет компенсации факельных трубопроводов выполняют на максимальную температуру сбрасываемых газов с проверкой на температуру пропарки.
6.3.15.23 Для исключения передачи больших горизонтальных усилий и компенсационных деформаций на патрубки факельных стволов необходимо на факельном коллекторе перед факелом устройство ограничительных упоров, исключающих передачу нежелательных нагрузок и деформаций на факельный ствол.
6.3.15.24 Допустимые максимальные нагрузки на патрубки факельной установки приводят в документации изготовителя. Соответствующее требование включают в опросные листы.
6.3.15.25 Для защиты ММГ от растепления в зоне действия теплового потока факела необходимо устройство защитных мероприятий, препятствующих растеплению.
6.3.16 Установка улавливания легких фракций
6.3.16.1 УУЛФ предназначена для сбора и компримирования паров легких фракций углеводородов паровоздушного пространства резервуаров (включая при необходимости резервуары системы подготовки пластовой воды) с целью уменьшения загрязнения воздуха в районе резервуарного парка, максимального сохранения легких нефтяных углеводородов и снижения пожаровзрывоопасности резервуарного парка.
6.3.16.2 Сбор углеводородных газов осуществляют системой газоуравнительных трубопроводов.
6.3.16.3 Газоуравнительные трубопроводы на каждом резервуаре включают детонационно-стойкий огнепреградитель и электроприводную запорную арматуру для возможности дистанционного отключения аварийного резервуара.
6.3.16.4 УУЛФ должна быть полностью автоматизированной и состоять из технологического блока и блока управления. Блоки располагают в основном в блок-боксах, оснащенных необходимым инженерным обеспечением.
6.3.16.5 Изготовление и поставка технологического блока и блока управления блочно-комплектная полной заводской готовности.
6.3.16.6 Работа УУЛФ обеспечивает давление в резервуарах в пределах технологических давлений дыхательных клапанов резервуара при изменяющихся режимах поступления и откачки нефти.
6.3.16.7 Взаимное размещение технологического блока и блока управления устанавливают согласно требованиям [29] в зависимости от исполнения блока управления по взрывобезопасности.
6.3.16.8 Кабельные соединения между блоками включают в объем поставки.
6.3.16.9 Сопроводительная документация на УУЛФ включает требование на устройство опорных конструкций соединительных кабелей между блоками.
6.3.16.10 В ПД предусматривают расчет эффективности работы УУЛФ.
6.3.17 Пункт приема нефтегазоводяной смеси
6.3.17.1 Для слива НГВС при давлении насыщенных паров нефти не выше 500 мм рт. ст. применяют автоцистерны, оборудованные патрубком нижнего слива. Для слива нефтеводяной смеси при давлении насыщенных паров нефти выше 500 мм рт. ст. применяют автоцистерны, оборудованные патрубком нижнего слива и патрубком из верхней полости автоцистерны для присоединения газоуравнительной линии (системы рекурперации паров) емкости приема НГВС.
6.3.17.2 Пункт приема размещают на территории технологического комплекса подготовки нефти. В исключительном случае пункт размещают на отдельной территории, оснащенной резервуарами приема и необходимыми системами для безопасного функционирования.
6.3.17.3 Слив НГВС проводят закрытым (герметичным) способом через нижние сливные устройства цистерны самотеком или с помощью насоса автоцистерн в приемные емкости. Также допускается применение отдельно стоящей насосной для перекачки жидкости из автоцистерн в приемную емкость.
6.3.17.4 Используемые расходомеры и фильтры сливного устройства должны соответствовать условиям их применения по давлению, вязкости НГВС, производительности и другим данным. Сливное приемное устройство оборудовано гибким шлангом и муфтой сухого разъема, а также каплесборником для исключения пролива нефти по окончании операции слива.
6.3.17.5 Система слива обеспечивает:
- блокировку возможности слива при отсутствии заземления автоцистерны;
- измерение количества принимаемой НГВС.
6.3.17.6 Систему слива для НГВС с давлением насыщенных паров более 500 мм рт. ст. оснащают быстросъемными соединениями для возможности присоединения цистерн, оснащенных патрубками из верхней полости к замкнутым газоуравнительным системам объектов подготовки нефти.
6.3.17.7 Пункт приема имеет операторную для управления сливом. Необходимость проектирования отдельной операторной или обеспечение управления и контроля слива из операторной технологического комплекса определяют в проекте в зависимости от территориального размещения системы слива.
6.3.17.8 Для обеспечения самотечного слива автоцистерны предусматривают постамент с пандусом для заезда автоцистерны. Высота постамента должна обеспечивать возможность самотечного слива продукта из автоцистерны в приемную емкость.
6.3.17.9 Постамент оснащают устройством, исключающим самопроизвольное перемещение автоцистерны при сливной операции.
6.3.17.10 Приемную емкость подключают к газоуравнительной системе объектов подготовки нефти или к воздушнику (свеча рассеивания).
6.3.17.11 Пункт приема размещают на наружной площадке с твердым покрытием. Наружная площадка пункта приема должна иметь уклон в сторону дождеприемника и дренажную емкость для приема поверхностных (дождевых) стоков.
6.3.17.12 Раскачку емкости сбора поверхностных (дождевых) стоков предусматривают в систему канализации для дальнейшей очистки и утилизации или направляют в процесс подготовки нефти при попадании в емкость нефти при разливе на площадке.
6.3.17.13 Для учета количества принимаемой НГВС в общем балансе технологического комплекса информацию по отгрузке НГВС передают в операторную технологического комплекса.
6.3.17.14 Для ограничения выезда автоцистерны по окончании слива на выезде предусматривают установку шлагбаума.
6.3.18 Испытательная лаборатория
6.3.18.1 Испытательная лаборатория предназначена для проведения регулярного аналитического контроля параметров НГВС, добытых нефти и попутного нефтяного газа и вспомогательных материалов.
6.3.18.2 Перечень методов испытаний для аналитического контроля физико-химических свойств нефти, попутного нефтяного газа, воды соответствует документам, устанавливающим параметры:
- для нефти - не ниже требований технического регламента;
- для ПНГ - в соответствии с ГОСТ 5542; для газа, подаваемого другим потребителям, необходимо учитывать ТТ организации-потребителя;
- для воды, подаваемой на хозяйственно-бытовые нужды, - санитарно-эпидемиологическим нормам и правилам [30];
- для воды, подаваемой на производственные нужды, - в соответствии требованиям технологического процесса;
- для воды, закачиваемой в нагнетательные скважины, - в соответствии с 6.3.4.5.
6.3.18.3 Проект на испытательную лабораторию содержит:
- перечень объектов и методов испытаний в соответствии с функциональными задачами проектируемой испытательной лаборатории;
- объемы (периодичность) испытаний;
- перечень помещений для проведения всех объемов испытаний, вспомогательных и бытовых помещений;
- архитектурно-строительное решение по проектированию помещений лаборатории;
- системы отопления, теплоснабжения, вентиляции, кондиционирования, водоснабжения, канализации, электроснабжения, освещения, молниезащиты, заземления, связи;
- мероприятия пожарной безопасности, в том числе пожарной сигнализации и оповещения о пожаре;
- мероприятия по охране труда, режиму безопасности и гигиены труда;
- системы контроля доступа, охранной сигнализации, видеонаблюдения;
- лабораторное оборудование в соответствии с ГОСТ ИСО/МЭК 17025.
6.3.18.4 Внутренняя планировка здания (помещения) лаборатории соответствует характеру выполняемых испытаний и состоит из ряда обособленных помещений.
В состав внутренней планировки здания лаборатории входят:
- помещения для проведения аналитических испытаний;
- помещение весовой;
- помещение моечной (допустимо совмещать моечную с помещением для приема проб или допустимо отдельное помещение для приема проб);
- помещение для хранения лабораторной посуды, приборов;
- помещение для бытовых нужд (предназначенное для хранения, очистки и сушки уборочного инвентаря);
- санузел;
- гардеробная;
- душевая;
- аварийный душ;
- помещение для приема пищи;
- помещение для компьютерной и множительной техники;
- помещение для руководителя лаборатории;
- помещение для инженерно-технических работников (при необходимости);
- помещение архива;
- помещения для приточной системы вентиляции;
- помещения для вытяжной системы вентиляции;
- помещение электрощитовой;
- помещение теплового и водомерного узла с размещением приборов контроля, управления и автоматизации.
6.3.18.5 Помещения лаборатории имеют выход в коридор здания или непосредственно наружу. Лаборатория, кроме главного входа, имеет запасной выход (выходы).
6.3.18.6 В лаборатории для проведения каждого вида аналитического испытания оборудуют отдельное рабочее место. Площадь рабочего места должна быть не менее 4,5 м2, высота помещений - не менее 3,25 м.
6.3.18.7 В производственных помещениях лаборатории предусматривают хранение суточного запаса химических реактивов (в том числе ЛВЖ, ГЖ, прекурсоров). Хранение запаса химических реактивов, ЛВЖ, ГЖ, в том числе прекурсоров, превышающего суточную потребность лаборатории, предусматривают в отдельном (или отдельно стоящем) складе из расчета на 12 мес, если иное не указано в задании на проектирование.
6.3.18.8 Хранение проб нефти и нефтепродуктов осуществляют в соответствии с ГОСТ 2517.
6.3.18.9 Возможность совместного хранения жидких и твердых химреактивов в помещениях лаборатории и склада реактивов определяют на основе количественного учета показателей пожарной безопасности, токсичности, химической активности.