ГОСТ Р 50.05.06-2018. Национальный стандарт Российской Федерации. Система оценки соответствия в области использования атомной энергии. Оценка соответствия в форме контроля. Унифицированные методики. Магнитопорошковый контроль
7 Проведение магнитопорошкового контроля
7.1 Подготовка к контролю
7.1.1 Перед проведением МПК необходимо:
- подготовить поверхность и оценить ее пригодность к контролю;
- проверить работоспособность дефектоскопа;
- проверить качество дефектоскопических материалов.
7.1.2 Поверхность, подлежащая контролю, должна быть очищена от шлака, окалины и других загрязнений, мешающих проведению МПК. При этом ширина контролируемой зоны сварных соединений принимается согласно требованиям федеральных норм и правил в области использования атомной энергии, устанавливающих правила контроля основного металла, сварных соединений и наплавленных покрытий при эксплуатации оборудования, трубопроводов и других элементов АС, а также правила контроля металла оборудования и трубопроводов АЭУ при изготовлении и монтаже.
7.1.3 Выявленные при визуальном осмотре несплошности должны быть устранены до проведения МПК. Шероховатость контролируемой поверхности должна соответствовать значениям, указанным в таблице 1.
7.1.4 Подготовка поверхности и устранение дефектов по 8.1.2 и 8.1.3 в обязанности контролеров не входят.
7.1.5 МПК допускается проводить на объектах после нанесения немагнитного покрытия (например, оксидирования, цинкования, хромирования, кадмирования, окраски), если толщина покрытия не превышает 20 мкм. При этом толщина покрытия измеряется любым измерителем толщины покрытий требуемого диапазона, с погрешностью не более 2,5 мкм.
7.1.6 Поверхность, подлежащая контролю и имеющая следы масла или жирсодержащих суспензий, обезжиривается, если контроль проводят с использованием водной магнитной суспензии, и дополнительно просушивается, если контроль проводят сухим способом. При необходимости (например, для объекта контроля с темной поверхностью) наносят контрастное покрытие толщиной не более 20 мкм.
7.1.7 Проверку работоспособности дефектоскопов и качества дефектоскопических материалов осуществляют перед началом смены с помощью измерителей напряженности поля и (или) тока, контрольных образцов и приборов для измерения концентрации суспензии.
7.1.8 Освещенность контролируемой поверхности объектов при использовании черных и цветных нелюминесцирующих магнитных порошков или суспензий на их основе должна быть 1000 лк или более в зависимости от требуемой чувствительности к несплошностям и оптических свойств поверхности объектов контроля. Освещенность при контроле в стационарных условиях контролируют с помощью люксметра один раз в месяц или перед проведением МПК, измерения проводят на объекте, относительная погрешность - не более 8%.
7.1.9 При контроле следует применять комбинированное освещение (общее и местное). Для местного освещения допускается применение ламп накаливания, но только в молочной или матированной колбе. Могут быть использованы галогенные лампы. Ксеноновые лампы применять не допускается. Для исключения появления бликов на полированных объектах контроля, смоченных магнитной суспензией, рабочие места осмотра оборудуют светильниками с непросвечивающими отражателями или рассеивателями таким образом, чтобы их светящиеся элементы и лучи, отраженные от объектов контроля, не попадали в поле зрения работающих.
7.1.10 Осмотр объектов контроля, обработанных суспензией с люминесцентным магнитным порошком, проводят при УФ-облучении. Уровень облученности контролируемой поверхности УФ-излучением должен быть не менее 2000 мкВт/см2. Относительная погрешность измерителя облученности должна быть не менее 10%. Длина волны УФ-излучения должна быть в диапазоне от 315 до 400 нм с максимумом излучения 365 нм. Относительная погрешность измерителя длины волны УФ-излучения не должна превышать 5%. При этом освещенность зоны контроля видимым светом должна быть не более 20 лк и контролироваться люксметром.
7.2 Проведение контроля
7.2.1 Требования к выбору способа и режима намагничивания
7.2.1.1 МП-дефектоскопы должны обеспечивать создание необходимой напряженности магнитного поля на поверхности объекта контроля. Это гарантируется показаниями СИ напряженности магнитного поля или проверкой на контрольном образце.
7.2.1.2 Напряженность магнитного поля при контроле СОН определяют с учетом достижения магнитного технического насыщения материала изделия. Значения напряженности поля насыщения основных марок сталей приведены в приложении Д.
При контроле способом приложенного поля напряженность магнитного поля, необходимую для обеспечения требуемого уровня чувствительности, определяют, исходя из коэрцитивной силы Hс материала объекта контроля по прямым, соответствующим условным уровням чувствительности А, Б, В (рисунок 1), или вычисляют по формулам: (1) - для уровня А, (2) - для уровня Б и (3) - для уровня В:
42 + 1,3Hс; (1)
20 + 1,1Hс; (2)
15 + 1,1Hс. (3)
Рисунок 1 - Номограммы для выбора напряженности приложенного
поля при СПП для условных уровней чувствительности А, Б, и В
Значения коэрцитивной силы основных марок сталей приведены в приложении Д.
7.2.1.3 Выбор способа и режима МПК проводится в зависимости от магнитных свойств контролируемого металла, требуемой чувствительности и конфигурации объекта контроля. МПК осуществляют СОН или СПП.
7.2.1.4 Для оценки возможности применения СОН следует пользоваться графиком определения способа контроля, приведенным на рисунке 2.
А, Б, В - условные уровни чувствительности
Рисунок 2 - График определения способа контроля
по остаточной индукции и коэрцитивной силе металла
Требуемый уровень чувствительности при контроле СОН определяется по известным магнитным характеристикам материала объекта контроля (коэрцитивной силе Hс, остаточной индукции Br, данных в приложении Б) и кривым А, Б и В, соответствующим условным уровням чувствительности. При этом контроль СОН с требуемой чувствительностью возможен в том случае, если остаточная индукция материала при заданном значении коэрцитивной силы равна или более значения остаточной индукции, определенной на соответствующей кривой.
7.2.1.5 При невозможности использования СПП из-за конфигурации объекта контроля применяют СОН. Контроль материалов, коэрцитивная сила которых Hс < 10 А/см, проводят только СПП. Для контроля материалов, коэрцитивная сила которых Hс >= 10 А/см и остаточная магнитная индукция Br >= 0,5 Тл, могут применять оба способа.
7.2.1.6 Значения напряженности магнитного поля могут быть уточнены экспериментально при контроле конкретных изделий. Относительная погрешность измерителя напряженности магнитного поля - не более 10%.
7.2.2 Требования к намагничиванию объекта контроля
7.2.2.1 Намагничивание объекта контроля могут проводить циркулярным, продольным (полюсным) или комбинированным видами с использованием переменного, выпрямленного и импульсного тока или магнитного поля. Виды, способы и схемы намагничивания приведены в таблице 2.
Таблица 2
Виды, способы и схемы намагничивания
Вид намагничивания | Способ намагничивания | Схема намагничивания |
Циркулярное | Пропускание тока по изделию, его участку или через токопроводящий проводник | |
Продольное (полюсное) | Пропускание магнитного потока по изделию или его участку с помощью магнита, электромагнита или соленоида | |
Комбинированное | Пропускание по изделию или его участку тока или магнитного потока в двух ортогональных направлениях | |
Примечание - 1 - сварной шов; 2 - зона контроля; 3 - основной металл; Ф - магнитный поток; I - намагничивающий ток. Схемы намагничивания, приведенные для сварного соединения, справедливы и для основного материала. |
7.2.2.2 Циркулярный вид намагничивания осуществляют путем пропускания тока через объект контроля или его участки либо через токопроводящий проводник, помещенный в отверстие объекта контроля.
7.2.2.3 Продольный (полюсный) вид намагничивания осуществляют путем помещения объекта контроля или его участков в магнитное поле постоянного магнита, электромагнита или соленоида.
7.2.2.4 Комбинированный вид намагничивания осуществляют путем наложения двух ортогонально направленных токов или магнитных полей, из которых по крайней мере одно переменное, одновременно СПП.
7.2.2.5 Показания тока при ЦН можно вычислять по формулам, приведенным в приложении Е.
Для уменьшения нагрева объекта контроля рекомендуется применять прерывистый режим намагничивания длительностью от 0,1 до 3,0 с с перерывами между циклами намагничивания не более 5 с.
7.2.2.6 Для выявления различно ориентированных несплошностей намагничивание каждого контролируемого участка проводят в двух направлениях, угол между которыми составляет от 70° до 90°. Расстояние L между электродами при ЦН должно быть от 75 до 250 мм. При этом ширина C контролируемого участка должна быть не более 0,6L.
7.2.2.7 С целью исключения пропуска несплошностей в местах стыковки контролируемых участков каждый последующий намагничиваемый участок должен перекрывать предыдущий на ширину не менее 20 мм при ЦН и не менее 30 мм при ПН. Это обеспечивается шагом перемещения полюсов магнита или электродов.
7.2.2.8 При ЦН способом пропускания тока через объект контроля с целью предупреждения прижогов рекомендуется:
- использовать наконечники или прокладки из металла с низкой температурой плавления (свинца, цинка, сплава алюминия и цинка и др.);
- периодически зачищать наконечники электроконтактов, не допуская их почернения;
- включать и выключать ток только при надежном электрическом контакте электрода намагничивающего устройства с объектом контроля.
7.2.2.9 При контроле изделий в продольном магнитном поле, в разомкнутой магнитной цепи необходимо учитывать влияние на чувствительность контроля размагничивающего фактора, связанного с формой изделия, особенно для изделий, имеющих отношение длины к эквивалентному диаметру менее 5. В этом случае необходимо:
- составлять объекты контроля в цепочку;
- применять удлинительные наконечники;
- применять переменный или импульсный ток питания намагничивающего устройства.
7.2.3 Требования к нанесению магнитного индикатора
7.2.3.1 Магнитный индикатор на контролируемую намагниченную поверхность наносят сухим или мокрым способом в виде порошка или суспензии соответственно.
7.2.3.2 При сухом способе магнитный порошок напыляют на контролируемую поверхность с его одновременным удалением с поверхности без несплошностей слабым потоком воздуха.
7.2.3.3 При мокром способе магнитную суспензию наносят на контролируемую поверхность путем погружения в ванну, распыления или полива слабой струей, не смывающей осевший порошок над несплошностью, с ее обязательным стеканием с поверхности. Для стекания магнитной суспензии поверхность должна быть наклонена.
7.2.3.4 Магнитный индикатор на контролируемую поверхность при контроле СПП наносят одновременно с намагничиванием объекта контроля. Намагничивание прекращают после стекания с контролируемой поверхности основной массы суспензии. При этом под стеканием основной массы суспензии понимается состояние, при котором дальнейшее стекание не изменяет картины отложения порошка над несплошностью. Осмотр контролируемой поверхности проводят после прекращения намагничивания.
7.2.3.5 Магнитный индикатор наносят на контролируемую поверхность при контроле СОН после снятия намагничивающего поля, но не позднее чем через 1 ч. Осмотр контролируемой поверхности проводят после стекания основной массы суспензии.
7.2.3.6 При контроле коротких изделий в продольном поле разомкнутой магнитной цепи магнитный индикатор наносят до разъема объектов контроля. Осмотр допускается проводить по отдельности, после стекания основной массы суспензии.
7.2.3.7 В зависимости от цвета (фона) контролируемой поверхности следует применять магнитные порошки, создающие наибольшую контрастность индикаторного рисунка.
7.3 Анализ результатов контроля
7.3.1 При контроле следует применять комбинированное освещение (общее и местное). Для местного освещения допускается применение ламп накаливания, но только в молочной или матированной колбе. Могут использоваться галогенные лампы. Ксеноновые лампы применять не допускается. Для исключения появления бликов на полированных объектах контроля, смоченных магнитной суспензией, рабочие места осмотра оборудуют светильниками с непросвечивающими отражателями или рассеивателями таким образом, чтобы их светящиеся элементы и лучи, отраженные от объектов контроля, не попадали в поле зрения работающих. Местное освещение рабочих мест рекомендуется оборудовать регуляторами освещения.
7.3.2 Осмотр объектов контроля, обработанных суспензией с люминесцентным магнитным порошком, проводят при УФ-облучении. Уровень облученности контролируемой поверхности УФ-излучением должен быть не ниже 2000 мкВт/см2. Относительная погрешность измерителя облученности не должна превышать 10%. Длина волны УФ-излучения должна быть в диапазоне от 315 до 400 нм с максимумом излучения 365 нм. Относительная погрешность измерителя длины волны УФ-излучения не должна превышать 5%. При этом освещенность зоны контроля видимым светом должна быть не более 20 лк и контролироваться люксметром.
7.3.3 Результаты контроля оценивают по наличию на контролируемой поверхности индикаторного следа в виде четкого плотного валика магнитного порошка, видимого невооруженным глазом или с использованием лупы до 7-кратного увеличения и воспроизводимого каждый раз при повторном нанесении магнитной суспензии или порошка, без учета его принадлежности к поверхностной или подповерхностной несплошности.
7.3.4 Индикаторные рисунки, образующиеся на несплошностях, имеют следующие характерные особенности:
- плоскостные несплошности (трещины, расслоения, несплавления и т.п.) проявляются в форме удлиненных, тонких индикаторных рисунков в виде валиков магнитного порошка;
- объемные несплошности (поры, раковины, включения) образуют округлые индикаторные рисунки;
- подповерхностные несплошности обычно дают нечеткое осаждение порошка.
7.3.5 Каждый индикаторный рисунок должен быть отмечен краской, цветным карандашом или другими способами.
7.3.6 При анализе и расшифровке индикаторных рисунков несплошностей различают осаждения магнитного порошка на реальных несплошностях от ложных осаждений. При отсутствии несплошностей осаждения магнитного порошка могут наблюдаться в местах:
- резких переходов от одного сечения объекта контроля к другому;
- резкого местного изменения магнитных свойств металла (например, по границе зоны термического влияния или по границе "металл шва - основной металл") и т.п.;
- касания намагниченного объекта ферромагнитным предметом (отверткой, другой деталью и др.);
- расположения риски, царапины и грубой обработки поверхности;
- границы наклепанной поверхности;
- группы мелких забоин;
- расположения карбидной полосчатости металла;
- расположения границ незачищенных сварных швов.
Как правило, в указанных местах образуются размытые, нечеткие осаждения магнитного порошка. Для определения причин осаждения магнитного порошка в таких случаях оценивают особенности конструкции объекта в этой зоне, проводят осмотр очищенной поверхности с использованием оптических средств, выполняют повторный МПК либо контроль капиллярным или вихретоковым методом.
7.3.7 Участок осмотра объектов целесообразно обеспечивать отбракованными объектами контроля с выявленными несплошностями и дефектограммами, изготовленными в соответствии с приложением Ж.
7.3.8 В целях повышения качества контроля целесообразно через каждый час работы по осмотру контролируемой поверхности, в том числе при осмотре на экране компьютера, делать перерыв на 10 - 15 мин.
7.3.9 Результаты контроля оценивают в соответствии с нормами, предусмотренными документацией на изготовление, монтаж или эксплуатацию объектов контроля, приведенными в федеральных нормах и правилах в области использования атомной энергии, устанавливающих правила контроля основного металла, сварных соединений и наплавленных покрытий при эксплуатации оборудования, трубопроводов и других элементов АС и правила контроля металла оборудования и трубопроводов АЭУ при изготовлении и монтаже.
7.3.10 Качество объектов контроля допускается оценивать как по индикаторным рисункам, так и по характеру реальных обнаруженных несплошностей: их размерам, количеству и распределению по поверхности проверяемых объектов.
7.4 Требования к размагничиванию
7.4.1 Необходимость размагничивания, проверка степени размагничивания, а также допустимая норма остаточной намагниченности каждого объекта контроля установлены производственно-технологической документацией на контроль. Объекты контроля, на которых проведен МПК, должны быть размагничены контролером:
- если их намагниченность вызывает погрешности в показаниях приборов, ухудшает работоспособность аппаратуры или датчиков, установленных в изделии;
- намагниченность в условиях эксплуатации объектов может вызвать накопление продуктов износа в подвижных сочленениях;
- остаточная намагниченность оказывает отрицательное влияние на последующие технологические операции изготовления или ремонта технических изделий, а также в других случаях.
7.4.2 Размагничивание осуществляют путем воздействия на деталь знакопеременного магнитного поля с убывающей от начального значения до нуля амплитудой. Размагничивающее поле может быть переменным (промышленной или низкой частоты), постоянным (выпрямленным импульсным), меняющейся полярности и с разной частотой коммутации.
7.4.3 Напряженность начального размагничивающего поля должна быть не менее величины намагничивающего поля, а в случае отсутствия данных о начальном намагничивающем поле - не менее пяти значений коэрцитивной силы материала изделия.
7.4.4 В зависимости от формы и размеров объектов размагничивание можно осуществлять следующими способами:
- продвижением объекта контроля через соленоид, питаемый переменным током или постоянным током изменяющейся полярности, и его удалением на расстояние, при котором напряженность магнитного поля соленоида равна напряженности фона. Например, для стационарных соленоидов это расстояние должно быть не менее 0,7 м;
- уменьшением до нуля тока в соленоиде переменного тока со вставленным в него размагничиваемым объектом. Если длина объекта более длины соленоида, то размагничивание проводят по участкам;
- удалением объекта от электромагнита (или электромагнита от объекта), питаемого переменным током либо постоянным током с периодически изменяющейся полярностью;
- уменьшением до нуля переменного тока в электромагните, в междуполюсном пространстве которого находится размагничиваемый объект или его участок;
- воздействием на объект контроля разнополярного убывающего импульсного магнитного поля;
- уменьшением до нуля амплитуды переменного тока, пропускаемого по объекту контроля, его части, кабелю или стержню, пропущенному через отверстие в объекте;
- воздействием на объект контроля магнитным полем, направленным встречно магнитному полю намагниченного объекта. Напряженность размагничивающего поля должна подбираться экспериментально таким образом, чтобы после его выключения остаточная индукция объекта была близка к нулю (применяют только для объектов простой формы).
При использовании переменного тока размагничивается поверхностный слой объекта, не превышающий глубины проникновения поля данной частоты в материал объекта.
7.4.5 Размагничивание массивных изделий целесообразно проводить по участкам с помощью электромагнитов, плоских катушек, гибкого кабеля, используя при необходимости следующие приемы:
- многократное (повторное) размагничивание изделия или его участка;
- увеличение времени процесса размагничивания от 30 до 60 с;
- уменьшение частоты магнитного переменного поля;
- вращение объекта контроля в различных плоскостях относительно размагничивающего поля.
7.4.6 При размагничивании коротких объектов контроля, имеющих малое (менее 5) отношение длины к толщине, следует располагать цепочкой или использовать удлинители с целью снижения размагничивающего фактора. Источники размагничивающего поля необходимо размещать таким образом, чтобы ось объекта контроля (особенно длинных деталей) была ориентирована с запада на восток для снижения подмагничивающего поля Земли.
7.4.7 Степень размагничивания определяют с помощью измерителей или градиентометров магнитных полей. После размагничивания уровень остаточной намагниченности на проконтролированных объектах не должен превышать (5 +/- 0,5) А/см, если в НД не установлены другие значения поля, вызываемого остаточной намагниченностью. Качественную (ориентировочную) оценку степени размагничивания проводят по отклонению стрелки компаса и др.