ГОСТ Р 56512-2015. Национальный стандарт Российской Федерации. Контроль неразрушающий. Магнитопорошковый метод. Типовые технологические процессы
12. Технологические операции и способы магнитопорошкового контроля. Намагничивание
12.1 Магнитопорошковый контроль включает следующие технологические операции:
- намагничивание;
- нанесение магнитного индикатора;
- осмотр контролируемой поверхности и обнаружение дефектов;
- оценка и оформление результатов контроля;
- размагничивание (при необходимости);
- заключительные операции.
12.2 При МПК применяют следующие виды намагничивания:
- циркулярное;
- продольное (полюсное);
- индукционное циркулярное;
- комбинированное;
- во вращающемся магнитном поле;
- способом магнитного контакта.
12.3 Вид, способ и схему намагничивания выбирают в зависимости от геометрической формы и размеров объекта контроля, материала и толщины немагнитного защитного покрытия, а также от типа, местоположения и ориентации дефектов, подлежащих выявлению. При этом наилучшее условие выявления дефектов - перпендикулярное направление намагничивающего магнитного поля по отношению к направлению ожидаемых дефектов.
12.4 Минимальное и максимальное значения напряженности приложенного магнитного поля определяют по приложению И или по формулам:
минимальное значение H мин = 15 + 1,1 Нс, (1)
максимальное H макс = 40 + 1,5 Нс. (2)
Примеры видов, способов и схем намагничивания объектов приведены в приложении Ж.
12.5 Допускается уменьшение угла между направлением магнитного поля и плоскостью дефектов до 30°. При этом если угол между направлением магнитного поля и плоскостью дефектов равен 60° и меньше, то для обеспечения выявляемости дефектов, соответствующей углу 90°, напряженность задаваемого намагничивающего поля Hз должна быть увеличена на коэффициент с учетом угла
между направлением магнитного поля и плоскостью ожидаемых дефектов по соотношению:
, (3)
или
, (4)
где Hm - напряженность магнитного поля, требуемая для выявления дефектов данного направления при угле между направлением магнитного поля и плоскостью дефектов 90°.
Коэффициент увеличения задаваемой напряженности магнитного поля в зависимости от угла между направлением магнитного поля и плоскостью дефектов равен:
Угол между направлением магнитного поля и плоскостью дефектов | Коэффициент магнитного поля |
60° | 1,15 |
50° | 1,30 |
40° | 1,56 |
30° | 2,00 |
Если вероятное направление распространения ожидаемых дефектов неизвестно, материал объекта намагничивают в двух взаимно перпендикулярных или трех направлениях или же применяют комбинированное намагничивание.
12.6 При циркулярном намагничивании магнитный поток весь свой путь проходит в материале проверяемого объекта. Циркулярное намагничивание осуществляют путем пропускания тока по всей поверхности или по всему объему материала контролируемого объекта либо по его части или же по центральному проводнику (стержню, кабелю), проходящему через сквозное отверстие в объекте. Рекомендуется размещать стержень по оси этого отверстия. Допускается проводить намагничивание одновременно нескольких полых объектов, надетых на стержень.
При циркулярном намагничивании преимущественно обнаруживаются дефекты продольной ориентации (распространяющиеся вдоль направления намагничивающего тока) и радиально направленные дефекты на торцевых поверхностях объектов. Выявление поперечных дефектов не гарантируется.
12.7 Циркулярное намагничивание при контроле внутренних поверхностей объектов проводят путем пропускания тока по вставленному в отверстие стержню, покрытому изоляционным материалом.
Продольное намагничивание таких объектов выполняют с применением соленоида, вставляемого во внутреннюю полость объектов.
12.8 При продольном (полюсном) намагничивании магнитный поток одну часть пути проходит в материале объекта контроля, другую - по воздуху. На объекте образуются магнитные полюсы. Продольное намагничивание осуществляют с помощью соленоидов, обмоток гибким кабелем, электромагнитов или намагничивающих устройств на постоянных магнитах.
При продольном намагничивании преимущественно обнаруживаются дефекты поперечной ориентации, т.е. распространяющиеся перпендикулярно оси соленоидов, обмоток кабелем и линий, соединяющих полюсные наконечники электромагнитов или устройств на постоянных магнитах. Выявление продольных дефектов не гарантируется.
Постоянные магниты могут входить в состав портативных переносных дефектоскопов и использоваться при локальном контроле объектов, в том числе конструктивно сложных и крупногабаритных, в цеховых, полевых, стапельных и других условиях.
12.9 Индукционное циркулярное намагничивание осуществляют путем возбуждения в материале объекта контроля электрического тока, полем которого объект намагничивается. Индукционное намагничивание применяют для выявления кольцевых дефектов, расположенных на боковых, внешней и внутренней поверхностях объекта контроля.
12.10 При намагничивании объектов применяют следующие виды электрического тока: импульсный, постоянный, переменный однофазный или трехфазный, выпрямленный однополупериодный или двухполупериодный, выпрямленный трехфазный, в том числе с фазовой регулировкой силы тока. При намагничивании переменным или импульсным током намагничивается поверхностный слой объекта контроля, что позволяет выявить только поверхностные дефекты. При намагничивании постоянным или выпрямленным током намагничиваются поверхностный и подповерхностный слои, что позволяет выявлять как поверхностные, так и подповерхностные дефекты (на глубине до 2 мм).
12.11 Комбинированное намагничивание осуществляют путем наложения на объект контроля двух или более различно направленных магнитных полей.
При комбинированном намагничивании используют:
- переменные синусоидальные, выпрямленные одно- или двухполупериодные магнитные поля, постоянное магнитное поле в сочетании с каким-либо переменным;
- однополупериодные выпрямленные магнитные поля, сдвинутые по фазе на 120°.
12.12 Намагничивание вращающимся магнитным полем осуществляется полем электрического тока, возбуждаемого в объекте контроля. Его выполняют в соленоидах типа статора асинхронного двигателя. Намагничивание вращающимся полем применяют при контроле СОН объектов с большим размагничивающим фактором, с ограниченными контактными площадками, объектов сложной формы и/или с нетокопроводящими покрытиями.
12.13 Значение тока при циркулярном намагничивании определяют в зависимости от требуемого значения тангенциальной составляющей напряженности магнитного поля на контролируемой поверхности, а также формы и размеров сечения объектов контроля. При контроле СОН ток циркулярного намагничивания рассчитывают по максимальному диаметру контролируемого объекта или по максимально удаленным зонам от оси проверяемого объекта. При контроле объектов, имеющих поперечное сечение простой формы, а также крупногабаритных объектов, значение тока определяют с помощью ниже приведенных формул, по формулам, приведенным в приложении Ж, или непосредственным измерением напряженности намагничивающего магнитного поля.
12.14 Расчетное значение тока I в амперах для циркулярного намагничивания пропусканием тока по всей поверхности или по всему объему материала объектов контроля относительно простого сечения определяют по формулам:
- для объектов с сечением в виде круга диаметром D (см):
I = 3HD, (5)
где H - заданная напряженность магнитного поля, А/см.
Для объектов, сечение которых в зоне контроля отличается от круга, за диаметр D принимают наибольший размер поперечного сечения. При сложной форме сечения объекта в качестве D принимают эквивалентный диаметр, который рассчитывают по соотношению:
, (6)
где P - периметр сечения объекта в зоне контроля, см.
Тогда
I = HP. (7)
При сложной форме сечения объекта в качестве D можно принимать также эквивалентный диаметр, рассчитываемый с учетом площади поперечного сечения:
, (8)
где S - площадь поперечного сечения в зоне контроля, см2.
12.15 Для бруска прямоугольного сечения шириной b и толщиной h (см) намагничивающий ток при циркулярном намагничивании определяют по одному из следующих соотношений:
I = 2Hb при b/h > 10, (9)
I = 2H(b + h) при b/h < 10, (10)
где H - заданная напряженность магнитного поля, А/см.
Расчет тока для объектов, имеющих форму, близкую к одной из вышеуказанных, проводится по тем же формулам.
12.16 Для объектов сложной формы силу тока циркулярного намагничивания в первом приближении определяют по тем же формулам, а затем уточняют экспериментально путем корректировки значения тока, обеспечивая заданную напряженность магнитного поля.
12.17 Циркулярное намагничивание части контролируемого объекта осуществляют пропусканием по нему электрического тока с помощью двух электроконтактов. Силу тока в амперах, пропускаемого по объекту, при намагничивании переменным, постоянным и выпрямленным токами определяют по формулам, приведенным в приложении Ж. Наибольший ток, пропускаемый по контролируемому объекту через электроконтакты, как правило, составляет не более 1500 - 1800 А.
12.18 Намагничивание объектов кольцевой формы при контроле с целью обнаружения дефектов, развивающихся в радиальных плоскостях или располагающихся на их боковых (торцевых), внутренних и внешних поверхностях, осуществляют с применением тороидальной обмотки. Силу намагничивающего тока определяют по формулам, приведенным в приложении Ж.
12.19 При индукционном намагничивании параметры тока и напряженности магнитного поля в намагничивающем устройстве выбирают так, чтобы в материале объекта контроля возбуждался электрический ток, полем которого объект намагничивается. Значение тока определяют с помощью одной из формул (3) - (8).
12.20 При продольном намагничивании объектов с помощью соленоида или обмотки гибким кабелем намагничивающий ток определяют с помощью формулы:
, (11)
где L - длина соленоида или обмотки кабелем, см;
H - требуемая напряженность магнитного поля, А/см;
N - число витков соленоида (обмотки);
m - коэффициент, определяемый в зависимости от следующих соотношений радиуса R и длины соленоида или обмотки:
Соотношение между радиусом и длиной соленоида (обмотки гибким кабелем) | Значение коэффициента m |
R = (1/6)L | 2,03 |
R = (1/5)L | 2,04 |
R = (1/4)L | 2,06 |
R = (1/3)L | 2,11 |
R = (1/2)L | 2,24 |
R = L | 2,83 |
R = 2L | 4,47 |
R = 3L | 6,33 |
R = 4L | 8,24 |
R = 5L | 10,20 |
При включении соленоида с находящимся в нем объектом контроля напряженность магнитного поля будет несколько отличаться от расчетной. Но это отличие для магнитопорошкового контроля несущественно.
12.21 При последовательном намагничивании объекта продольным, а затем циркулярным полем промежуточное размагничивание не проводят, если остаточная намагниченность не оказывает влияния на последующие операции контроля.
12.22 При контроле СОН режим намагничивания объектов (значение намагничивающего тока или напряженность магнитного поля) выбирают так, чтобы напряженность поля была близка техническому магнитному насыщению материала. В обоснованных случаях допускается применять поле меньшей напряженности.
12.23 При контроле СПП значения тангенциальной Ht и нормальной Hn составляющих вектора напряженности магнитного поля на контролируемой поверхности должны удовлетворять условию:
Hn/Ht <= 3. (12)
Значение Ht выбирают в соответствии с рекомендациями, приведенными в приложении И.
12.24 При применении СПП для объектов, у которых различные участки резко отличаются друг от друга по сечению, контроль следует проводить в два или более приемов, подбирая в каждом случае ток циркулярного намагничивания соответственно размеру (диаметру) объекта в контролируемых зонах.
12.25 При контроле объектов с большим размагничивающим фактором, имеющих отношение длины к корню квадратному из площади поперечного сечения (или максимальному размеру поперечного сечения) менее 5, при продольном намагничивании в разомкнутой цепи составляют объекты контроля в цепочки, размещая торцевыми поверхностями друг к другу, либо применяют удлинительные наконечники, либо используют переменный намагничивающий ток с частотой 50 Гц и более или импульсный ток.
Площадь соприкосновения деталей, составленных в цепочки, должна быть не менее 1/3 площади их торцевых поверхностей.
12.26 Для уменьшения вероятности прижогов и локального нагревания намагничивающих устройств и мест контакта проверяемых объектов при контроле СПП рекомендуется применять прерывистый режим намагничивания, при котором ток по проводникам намагничивающего устройства пропускают в течение (0,1 - 3,0) секунд с перерывами до 5 с.
12.27 При невозможности одновременного намагничивания всего объекта (например, при контроле объектов больших размеров или сложной формы) намагничивание с последующим выполнением других операций контроля следует проводить по отдельным участкам. Для этого, как правило, используют выносные намагничивающие средства: выносные электроконтакты, приставные электромагниты, устройства на постоянных магнитах, витки гибкого кабеля, накладываемые на намагничиваемые участки объекта, разъемные соленоиды и другие средства.
12.28 Намагничивание материала контролируемых объектов осуществляется максимальным (амплитудным) значением тока. Но в системах измерения намагничивающего тока могут быть использованы амперметры, которые в зависимости от принципа действия и градуировки при изготовлении могут определять среднеквадратичное (действующее, эффективное), среднее за полупериод или же амплитудное (максимальное) значение тока. Чаще всего шкалы амперметров градуируют в действующих значениях тока. Для контроля за процессом намагничивания объектов значение тока, рассчитанного по формулам, пересчитывают с учетом типа применяемого амперметра и вида намагничивающего тока.
12.29 Пересчет значений тока выполняют по соотношению:
Iпр = k·Iа, (13)
где Iпр - значение намагничивающего тока, показываемое измерительным прибором - амперметром;
k - коэффициент пропорциональности, зависящий от вида намагничивающего тока;
Iа - рассчитанное требуемое амплитудное значение тока.
12.30 При использовании в дефектоскопе амперметра, определяющего среднеквадратичное (действующее, эффективное) значение тока, коэффициент пропорциональности k равен:
Вид намагничивающего тока | Значение коэффициента k |
Переменный синусоидальный | 0,707 |
Выпрямленный однополупериодный | 0,500 |
Выпрямленный двухполупериодный | 0,707 |
Трехфазный полупериодный | 0,840 |
При использовании в дефектоскопе амперметра, определяющего среднее значение тока, коэффициент пропорциональности k равен:
Вид намагничивающего тока | Значение коэффициента k |
Выпрямленный однополупериодный | 0,318 |
Выпрямленный двухполупериодный | 0,637 |
Трехфазный однополупериодный | 0,826 |
Трехфазный двухполупериодный | 0,955 |
12.31 Значение намагничивающего тока как при циркулярном, так и продольном (в соленоидах, электромагнитах) и других способах намагничивания допускается определять и/или проверять экспериментально следующими способами:
- по выявлению естественных или искусственных дефектов на контрольных образцах, представляющих собой проверяемые объекты с трещинами минимальных размеров, расположенных в проверяемых зонах, либо по выявлению искусственных дефектов на таких образцах - объектах контроля, отбракованных по каким-либо другим параметрам;
- по установлению заданного значения тангенциальной составляющей магнитного поля на проверяемых объектах в зонах контроля, оцениваемого с помощью приборов измерения напряженности магнитного поля. При этом, если выполняется контроль СПП, должно учитываться соотношение нормальной и тангенциальной составляющих поля согласно 12.25. При измерении напряженности магнитного поля датчики приборов необходимо располагать непосредственно на поверхности объектов контроля.
Применение контрольных образцов в виде пластин, стержней, дисков и других образцов, отличающихся от объектов контроля, с трещинами или искусственными дефектами минимальных размеров, для определения режимов намагничивания конкретных объектов контроля не допускается.
12.32 Режим намагничивания объектов проверяют с помощью приборов и устройств для измерения электрического тока или напряженности магнитного поля с погрешностью измерения не более +/- 10%.
12.33 При намагничивании объектов контроля напряженность магнитного поля (значение намагничивающего тока) должна поддерживаться в пределах +/- 10% назначенного значения.