БИБЛИОТЕКА НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах

10. Требования к устройству трубопроводов

 

10.1. Размещение трубопроводов

10.1.1. Прокладка трубопроводов должна осуществляться по проекту, разработанному в соответствии с нормативно-технической документацией по промышленной безопасности.

10.1.2. Прокладка трубопроводов должна обеспечивать:

- возможность использования предусмотренных проектом на технологические трубопроводы подъемно-транспортных средств и непосредственного контроля за техническим состоянием трубопроводов;

- разделение на технологические узлы и блоки с учетом производства монтажных и ремонтных работ с применением средств механизации;

- возможность выполнения всех видов работ по контролю, термической обработке сварных швов, испытанию, диагностированию;

- изоляцию и защиту трубопроводов от коррозии, атмосферного и статического электричества;

- предотвращение образования ледяных и других пробок в трубопроводе;

- наименьшую протяженность трубопроводов;

- исключение провисания и образования застойных зон;

- возможность самокомпенсации температурных деформаций трубопроводов и защиту от повреждений;

- возможность беспрепятственного перемещения подъемных механизмов, оборудования и средств пожаротушения.

10.1.3. При выборе трассы трубопровода необходимо предусматривать возможность самокомпенсации температурных деформаций в местах поворотов трассы.

Трасса трубопроводов должна располагаться, как правило, со стороны, противоположной размещению тротуаров и пешеходных дорожек.

10.1.4. Трубопроводы необходимо проектировать, как правило, с уклонами, обеспечивающими их опорожнение при остановке.

Уклоны трубопроводов следует принимать не менее:

0,002 - для легкоподвижных жидких веществ;

0,002 - для газообразных веществ по ходу среды;

0,003 - для газообразных веществ против хода среды;

0,005 - для кислот и щелочей.

Для трубопроводов с высоковязкими и застывающими жидкостями величины уклонов принимают исходя из конкретных их свойств и особенностей, протяженности трубопроводов и условий их прокладки (в пределах до 0,02).

В обоснованных случаях допускается прокладка трубопроводов с меньшим уклоном или без уклона, но при этом должны быть предусмотрены мероприятия, обеспечивающие их опорожнение.

10.1.5. Для трубопроводов групп А, Б прокладка должна быть надземной на несгораемых конструкциях, эстакадах, этажерках, стойках, опорах.

Допускается прокладка таких трубопроводов на участках присоединения к насосам и компрессорам в непроходных каналах.

В непроходных каналах допускается прокладка трубопроводов, транспортирующих вязкие, легкозастывающие и горючие жидкости группы Б(в) (мазут, масла и т.п.), а также в обоснованных случаях - прокладка дренажных трубопроводов групп А и Б в случае периодического опорожнения оборудования.

Для трубопроводов группы В допускается, помимо надземной прокладки, также прокладка в каналах (закрытых или с засыпкой песком), тоннелях или в грунте с учетом [13]. При прокладке в грунте рабочая температура трубопровода не должна превышать 150 °C. Применение низких опорных конструкций допускается в тех случаях, когда это не препятствует движению транспорта и средств пожаротушения.

10.1.6. Каналы для трубопроводов групп А и Б следует выполнять из сборных несгораемых конструкций, перекрывать железобетонными несгораемыми конструкциями (железобетонными плитами), засыпать песком и при необходимости предусматривать защиту от проникновения в них грунтовых вод.

10.1.7. Прокладка трубопроводов в полупроходных каналах допускается только на отдельных участках трассы протяженностью не более 100 м, в основном - при пересечении трубопроводами групп Б(в) и В внутризаводских железнодорожных путей и автомобильных дорог с усовершенствованным покрытием.

При этом в полупроходных каналах следует предусматривать проход шириной не менее 0,6 м и высотой не менее 1,5 м до выступающих конструкций. На концах канала предусматриваются выходы и люки.

10.1.8. В местах ввода (вывода) трубопроводов групп А, Б в цех (из цеха) по каналам или тоннелям следует предусматривать средства по предотвращению попадания вредных и горючих веществ из цеха в канал и обратно (установка диафрагм из несгораемых материалов или устройство водо- и газонепроницаемых перемычек в каждом конкретном случае определяется проектом).

10.1.9. Расстояние между осями смежных трубопроводов и от трубопроводов до строительных конструкций (рисунок 10.1) как по горизонтали, так и по вертикали следует принимать с учетом возможности сборки, ремонта, осмотра, нанесения изоляции, а также величины смещения трубопровода при температурных деформациях. В Приложении Е указаны расстояния между осями смежных трубопроводов и от стенок каналов и стен зданий.

 

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах

 

Рисунок 10.1. Расположение трубопроводов

 

При наличии на трубопроводах арматуры для обогревающих спутников принятые по Приложению Е расстояния А и Б (см. рисунок 10.1) следует проверять исходя из условий необходимости обеспечения расстояния в свету не менее:

- для неизолированных трубопроводов при DN <= 600 - 50 мм;

- для неизолированных трубопроводов при DN > 600 и всех трубопроводов с тепловой изоляцией - 100 мм.

Расстояние между нижней образующей или теплоизоляционной конструкцией и полом или дном канала принимают не менее 100 мм.

Расстояние Б (между осями трубопроводов) определяют суммированием табличных размеров bi, где bi = b1, b2, ... b8 (Приложение Е).

При расположении фланцев в разных плоскостях ("вразбежку") расстояние между осями неизолированных трубопроводов следует определять суммированием b4 большего диаметра и b5 - b8 меньшего диаметра.

10.1.10. При проектировании трубопроводов в местах поворотов трассы следует учитывать возможность перемещений, возникающих от изменения температуры стенок трубы, внутреннего давления и других нагрузок.

10.1.11. При совместной прокладке трубопроводов и электрокабелей для определения расстояния между ними следует руководствоваться [13], [14], правилами устройства электроустановок и нормативными документами.

10.1.12. Не допускается прокладка трубопроводов внутри административных, бытовых, хозяйственных помещений и в помещениях электрораспределительных устройств, электроустановок, щитов автоматизации, в помещениях трансформаторов, вентиляционных камер, тепловых пунктов, на путях эвакуации персонала (лестничные клетки, коридоры и т.п.), а также транзитом через помещения любого назначения.

Межцеховые трубопроводы групп А и Б, прокладываемые вне опасного производственного объекта, следует располагать от зданий, где возможно пребывание людей (столовая, клуб, медпункт, административные здания и т.д.), на расстоянии не менее 50 м в случае надземной прокладки и не менее 25 м - при подземной прокладке.

10.1.13. При проектировании трубопроводных трасс следует учитывать возможность реконструкции, для этого при определении размеров конструкций необходимо предусматривать резерв как по габаритам, так и по нагрузкам на эти конструкции. В каждом конкретном случае резерв определяется проектом.

10.1.14. Не допускается размещать арматуру, дренажные устройства, разъемные соединения в местах пересечения надземными трубопроводами автомобильных и железных дорог, пешеходных переходов, над дверными проемами, под и над окнами и балконами. В случае необходимости применения разъемных соединений (например, для трубопроводов с внутренним защитным покрытием) должны предусматриваться защитные поддоны.

По несгораемой поверхности несущих стен производственных зданий допускается прокладывать внутрицеховые трубопроводы с условным проходом до 200 мм исходя из допускаемых нагрузок на эти стены. Такие трубопроводы должны располагаться на 0,5 м ниже или выше оконных и дверных проемов. При этом трубопроводы с легкими газами располагаются выше, а с тяжелыми - ниже оконных и дверных проемов. Прокладка трубопроводов по стенам зданий со сплошным остеклением, а также по легкосбрасываемым конструкциям не допускается.

10.1.15. Внутрицеховые трубопроводы, транспортирующие вещества групп А, Б и газы группы В (с номинальным проходом до 100 мм), допускается прокладывать по наружной поверхности глухих стен вспомогательных помещений.

10.1.16. Прокладка трубопроводов на низких и высоких отдельно стоящих опорах или эстакадах возможна при любом сочетании трубопроводов независимо от свойств и параметров транспортируемых веществ. При этом трубопроводы с веществами, смешение которых при разгерметизации может привести к аварии, следует располагать на максимальном взаимном удалении.

При многоярусной прокладке трубопроводов их следует располагать:

- трубопроводы кислот, щелочей и других агрессивных веществ - на самых нижних ярусах;

- трубопроводы с веществами групп Б(а), Б(б) - на верхнем ярусе и, по возможности, у края эстакады.

10.1.17. Установка П-образных компенсаторов над проездами и дорогами, как правило, не допускается. Указанная установка компенсаторов допускается при обосновании невозможности или нецелесообразности их размещения в других местах.

10.1.18. При прокладке на эстакадах трубопроводов, требующих регулярного обслуживания (не менее одного раза в смену), а также на заводских эстакадах должны предусматриваться проходные мостики из несгораемых материалов шириной не менее 0,6 м и с перилами высотой не менее 1 м, а через каждые 200 м и в торцах эстакады при расстоянии менее 200 м - вертикальные лестницы с шатровым ограждением или маршевые лестницы.

10.1.19. При прокладке трубопроводов на низких опорах расстояние от поверхности земли до низа трубы и до теплоизоляции следует принимать в соответствии с требованиями НД. Для перехода через трубопроводы должны быть оборудованы пешеходные мостики.

Допускается предусматривать укладку трубопроводов диаметром до 300 мм включительно в два яруса и более, при этом расстояние от поверхности площадки до верха труб или теплоизоляции верхнего яруса должно быть, как правило, не более 1,5 м.

10.1.20. При соответствующих обоснованиях, если позволяет несущая способность трубопровода, допускается крепление к ним других трубопроводов меньшего диаметра. Не допускается такой способ крепления к трубопроводам, содержащим:

- среды групп А, Б;

- технологические среды с температурой выше 300 °C и ниже минус 40 °C или давлением выше 10 МПа (100 кгс/см2) независимо от температуры;

- вещества с температурой самовоспламенения в прикрепляемом трубопроводе ниже 0,8 температуры самовоспламенения веществ в несущем трубопроводе.

10.1.21. При прокладке паропроводов совместно с другими трубопроводами следует дополнительно руководствоваться правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды.

10.1.22. Трубопроводы, проходящие через стены или перекрытия зданий, следует заключать в специальные гильзы или футляры. Сварные и разъемные соединения трубопроводов внутри футляров или гильз не допускаются.

Внутренний диаметр гильзы принимают на 10 - 12 мм больше наружного диаметра трубопровода (при отсутствии изоляции) или наружного диаметра изоляции (для изолированных трубопроводов).

Гильзы должны быть жестко заделаны в строительные конструкции, зазор между трубопроводом и гильзой (с обоих концов) следует заполнять негорючим материалом, допускающим перемещение трубопровода вдоль его продольной оси.

Гильзы не могут служить опорой трубопровода.

10.1.23. На трубопроводах выброса в атмосферу от технологических аппаратов, содержащих взрыво- и пожароопасные вещества, должны устанавливаться огнепреградители.

10.1.24. Трубопроводы для выброса газовых технологических сред (факельные трубопроводы) должны отвечать требованиям правил устройства и безопасной эксплуатации факельных систем.

10.1.25. Всасывающие и нагнетательные коллекторы компрессоров со средами групп А и Б следует располагать, как правило, вне машинных залов. Отключающая (запорная) от коллектора арматура на всасывающем трубопроводе со средами групп А и Б в каждой машине должна быть установлена у коллектора вне здания с целью ограничения количества вредных и взрывопожароопасных веществ, которые могут попасть в помещение при аварийных ситуациях. На нагнетательных линиях компрессоров, работающих на общий коллектор, предусматривают установку обратных клапанов между компрессором и запорной арматурой.

10.1.26. Прокладка трубопроводов в каналах допускается только при соответствующем обосновании (с учетом 10.1.5; 10.1.7).

10.1.27. Межцеховые трубопроводы групп А и Б не допускается прокладывать под и над зданиями.

Трубопроводы групп А, Б(а), Б(б) не допускается укладывать в общих каналах с паропроводами, теплопроводами, кабелями силового и слабого токов.

10.1.28. Подземные трубопроводы, прокладываемые непосредственно в грунте в местах пересечения автомобильных дорог и железных дорог, должны быть размещены в защитных металлических или бетонных трубах, концы которых должны отстоять от головки рельсов или от бровки обочины дороги не менее чем на 2 м; расстояние от верхней образующей защитной трубы до подошвы шпалы железнодорожного пути должно быть не менее 1 м, до бровки полотна автодороги - не менее 0,5 м.

10.1.29. Свободная высота эстакад для трубопроводов над проездами и проходами должна быть не менее:

5,55 м - для железнодорожных путей (над головкой рельса);

5 м - (4,5 при соответствующем обосновании) для автомобильных дорог;

2,2 м - для пешеходных дорог.

10.1.30. При пересечении высокими эстакадами железнодорожных путей и автомобильных дорог расстояние по горизонтали от грани ближайшей опоры эстакады должно быть не менее:

2,45 м - до оси железнодорожного пути нормальной колеи;

1,0 м - до бордюра автомобильной дороги.

10.1.31. Пересечение эстакад с воздушными линиями электропередач выполняют в соответствии с правилами устройства электроустановок.

Воздушные линии электропередач на пересечениях с эстакадами должны проходить только над трубопроводами. Минимальное расстояние по вертикали от верхних технологических трубопроводов эстакады до линий электропередач (нижних проводов с учетом их провисания) следует принимать в зависимости от напряжения (Приложение Ж).

Расстояние по вертикали от верхних технологических трубопроводов до нижней части вагонеток (с учетом провисания троса) подвесной дороги должно быть не менее 3 м.

При определении вертикального и горизонтального расстояний между воздушными линиями электропередач и технологическими трубопроводами всякого рода защитные ограждения, устанавливаемые над ними в виде решеток, галерей, площадок, рассматривают как части трубопровода.

10.1.32. При подземной прокладке трубопроводов в случае одновременного расположения в одной траншее двух и более трубопроводов их следует располагать в один ряд (в одной горизонтальной плоскости). Расстояние между ними в свету надлежит принимать при следующих номинальных диаметрах трубопроводов:

- до 300 мм вкл. - не менее 0,4 м;

- более 300 мм - не менее 0,5 м.

10.1.33. Подземные трубопроводы должны быть защищены от почвенной коррозии специальной усиленной противокоррозионной защитой (изоляцией).

10.1.34. Глубина заложения подземных трубопроводов должна быть не менее 0,6 м от поверхности земли до верхней части трубы или теплоизоляции в тех местах, где не предусмотрено движение транспорта, а на остальных участках глубину заложения принимают исходя из условий сохранения прочности трубопровода с учетом всех действующих нагрузок.

Трубопроводы, транспортирующие застывающие, увлажненные и конденсирующиеся вещества, должны располагаться на 0,1 м ниже глубины промерзания грунта, с уклоном к конденсатосборникам, другим емкостям или аппаратам.

10.1.35. По возможности следует избегать пересечения и сближения до расстояния менее 11 м трубопроводов с рельсовыми путями электрифицированных железных дорог и другими источниками блуждающих токов. В обоснованных случаях допускается уменьшение указанного расстояния при условии применения соответствующей защиты от блуждающих токов, с обоснованием в проекте.

В местах пересечения подземных трубопроводов с путями электрифицированных железных дорог применяют диэлектрические прокладки.

10.1.36. Над эстакадами внутрицеховых трубопроводов в местах отсутствия фланцевых и других соединений разрешается установка воздушных холодильников.

10.2. Устройства для дренажа и продувки трубопроводов

10.2.1. Все трубопроводы, независимо от транспортируемого продукта, должны иметь дренажи для слива воды после гидравлического испытания и воздушники в верхних точках трубопроводов для удаления газа.

Необходимость специальных устройств для дренажа и продувки определяется проектом в зависимости от назначения и условий работы трубопровода.

10.2.2. Опорожнение трубопроводов в основном должно производиться в технологическое оборудование, имеющее устройства для периодического или непрерывного отвода жидкости. При невозможности обеспечения полного опорожнения (при наличии "мешков", обратных уклонов и т.д.) в нижних точках трубопроводов следует предусматривать специальные дренажные устройства непрерывного или периодического действия.

10.2.3. Трубопроводы, в которых возможна конденсация продукта, должны иметь дренажные устройства для непрерывного удаления жидкости.

В качестве дренажных устройств непрерывного действия, в зависимости от свойств и параметров среды, можно применять конденсатоотводчики, гидравлические затворы, сепараторы и другие устройства с отводом жидкости в закрытые системы и сборники.

10.2.4. Непрерывный отвод дренируемой жидкости из трубопровода предусматривают из специального штуцера-кармана, ввариваемого в дренируемый трубопровод.

Диаметр штуцера-кармана, в зависимости от диаметра дренируемого трубопровода, следует принимать по таблице 10.1.

 

Таблица 10.1

 

Номинальные диаметры штуцеров-карманов

 

В миллиметрах

 

Номинальный диаметр трубопровода, DN

От 100 до 125

От 150 до 175

От 200 до 250

От 300 до 350

От 400 до 450

От 500 до 600

От 700 до 800

От 900 до 1200

Номинальный диаметр штуцера-кармана, DN

50

80

100

150

200

250

300

350

 

На трубопроводах номинальным диаметром менее 100 мм штуцера-карманы не предусматривают.

Диаметр отводящей трубы, присоединяемой к штуцеру-карману, определяют гидравлическим расчетом.

10.2.5. В качестве дренажных устройств периодического действия следует предусматривать специальные сливные штуцера с запорной арматурой для присоединения стационарных или съемных трубопроводов, гибких шлангов для отвода продуктов в дренажные емкости или в технологическое оборудование. На запорную арматуру устанавливают заглушку. Дренажные устройства для аварийного опорожнения проектируют стационарными.

Для продуктов 1 и 2-го классов опасности и для сжиженных газов устройства для опорожнения с помощью гибких шлангов не допускаются.

Диаметр дренажного трубопровода принимают в соответствии с гидравлическим расчетом исходя из условий регламентированного времени дренажа, но не менее 25 мм.

10.2.6. Для прогрева и продувки трубопроводов, в которых возможна конденсация продукта, на вводе в производственные цеха, технологические узлы и установки перед запорной арматурой, а также на всех участках трубопроводов, отключаемых запорными органами, должен быть предусмотрен в концевых точках дренажный штуцер с запорным клапаном (и заглушкой - для токсичных продуктов).

Диаметры дренажных штуцеров и запорной арматуры для удаления конденсата из паропровода при его продувке, а также из трубопроводов другого назначения в случае необходимости их продувки паром принимают в зависимости от диаметра трубопровода по таблице 10.2.

 

Таблица 10.2

 

Номинальные диаметры дренажных штуцеров и запорной арматуры

 

В миллиметрах

 

Номинальный диаметр трубопровода, DN

До 70

От 80 до 125

От 150 до 170

От 200 до 250

От 300 до 400

От 450 до 600

От 700 до 800

От 900 до 1200

Номинальный диаметр штуцера и арматуры, DN

25

32

40

50

80

100

125

150

 

10.2.7. Для опорожнения трубопроводов от воды после гидравлического испытания используют в первую очередь устройства для технологического дренажа трубопроводов. При отсутствии технологического дренажа предусматривают штуцера, ввариваемые непосредственно в дренируемый трубопровод.

Диаметры дренажных штуцеров следует принимать не менее указанных в таблице 10.3.

 

Таблица 10.3

 

Номинальные диаметры дренажных штуцеров

 

В миллиметрах

 

Номинальный диаметр трубопровода, DN

От 25 до 80

От 100 до 150

От 175 до 300

От 350 до 450

От 500 до 700

От 800 до 1200

Номинальный диаметр штуцера, DN

15

20

25

32

40

50

 

10.2.8. Для трубопроводов, предназначенных для транспортирования сжиженных газов, пожаровзрывоопасных продуктов и веществ 1 и 2-го классов опасности, должны быть предусмотрены в начальных и конечных точках штуцера с арматурой и заглушкой для продувки их инертным газом или водяным паром и/или промывки водой либо специальными растворами.

Подвод (отвод) инертного газа, пара, воды или промывочной жидкости к трубопроводам должен производиться с помощью съемных участков трубопроводов или гибких шлангов. По окончании продувки (промывки) съемные участки или шланги должны быть сняты, а на запорную арматуру установлены заглушки.

10.2.9. Применение гибких шлангов для удаления сжиженных газов из стационарного оборудования не допускается.

Для заполнения и опорожнения нестационарного оборудования (слив и налив железнодорожных цистерн, контейнеров, бочек и баллонов) допускается применение гибких шлангов.

10.2.10. Трубопроводы с технологическими средами 1, 2 и 3-го классов опасности следует продувать в специальные сбросные трубопроводы с последующим использованием или обезвреживанием продувочных газов и паров. Продувку остальных трубопроводов допускается осуществлять через продувочные свечи в атмосферу.

10.2.11. Схему продувки трубопровода и расположение продувочных свечей определяют при проектировании в каждом конкретном случае с соблюдением требований нормативно-технической документации.

10.2.12. Продувочные свечи должны иметь устройства для отбора проб с арматурой, а продувочные свечи для горючих и взрывоопасных продуктов - также и огнепреградители.

10.2.13. Продувочные свечи и трубопроводы выброса от предохранительных клапанов в нижних точках должны иметь дренажные отверстия и штуцера с арматурой либо другие устройства, исключающие возможность скопления жидкости в результате конденсации.

10.2.14. Все виды конденсатоотводящих устройств и все дренажные трубопроводы, размещаемые вне помещений, должны быть надежно защищены от замерзания теплоизоляцией и обогревом.

10.3. Размещение арматуры

10.3.1. На вводах (и выводах) трубопроводов в цеха, в технологические узлы и в установки должна устанавливаться запорная арматура.

10.3.2. Необходимость применения арматуры с дистанционным или ручным управлением определяется условиями технологического процесса и обеспечением безопасности работы.

10.3.3. На вводах трубопроводов для горючих газов (в том числе сжиженных), легковоспламеняющихся и горючих жидкостей (ЛВЖ и ГЖ соответственно) номинальных диаметров DN >= 400 должна устанавливаться запорная арматура с дистанционным управлением и ручным дублированием.

10.3.4. Запорная арматура с дистанционным управлением должна располагаться вне здания на расстоянии не менее 3 м и не более 50 м от стены здания или ближайшего аппарата, расположенного вне здания.

Дистанционное управление запорной арматурой следует располагать в пунктах управления, операторных и других безопасных местах с постоянным присутствием персонала.

Управление запорной арматурой с дистанционным управлением, предназначенной для аварийного сброса газа, следует осуществлять из операторной.

10.3.5. На внутрицеховых обвязочных трубопроводах установка и расположение запорной арматуры должны обеспечивать возможность надежного отключения каждого агрегата или технологического аппарата, а также всего трубопровода.

10.3.6. Для уменьшения усилий при открытии запорной арматуры с ручным приводом номинальных диаметров DN > 500 и номинальных диаметров DN > 350 на номинальные давления PN > 16 следует предусматривать обводные линии (байпасы) для выравнивания давлений во входном и выходном патрубках запорной арматуры (таблица 10.4).

 

Таблица 10.4

 

Номинальный диаметр обводных линий

 

В миллиметрах

 

Номинальный диаметр DN запорной арматуры

От 350 до 600

От 700 до 800

1000

1200

1400

Номинальный диаметр DN байпаса

50

80

100

125

150

 

10.3.7. Регулирующие клапаны, обеспечивающие параметры непрерывного технологического процесса, следует снабжать байпасной линией с соответствующей запорной арматурой.

10.3.8. При расположении арматуры на трубопроводе следует руководствоваться указаниями ТУ и эксплуатационной документации.

10.3.9. В местах установки арматуры массой более 50 кг должны быть предусмотрены переносные или стационарные средства механизации для монтажа и демонтажа.

10.3.10. На нагнетательных линиях компрессоров и центробежных насосов предусматривают установку обратной арматуры.

Обратную арматуру устанавливают между нагнетателем и запорной арматурой. На центробежных насосах, работающих в системе практически без избыточного давления, допускается обратную арматуру не ставить.

10.3.11. На трубопроводах, подающих вещества групп А и Б в емкости (сосуды), работающие под избыточным давлением, должны устанавливаться обратные клапаны, если нет другого устройства, предотвращающего перемещение транспортируемых веществ обратным ходом.

Последовательность установки обратного клапана и запорной арматуры и количество арматуры должны обеспечивать возможность внеочередных ревизий обратных клапанов без остановки технологического процесса, если срок ревизии обратного клапана меньше срока ревизии трубопровода.

10.3.12. Для надежного отключения от коллектора агрегатов (технологических аппаратов) с рабочим давлением Pр >= 4,0 МПа (40 кгс/см2) на трубопроводах, транспортирующих вещества групп А, Б(а), Б(б), следует устанавливать две единицы запорной арматуры с дренажным устройством между ними номинальным диаметром DN 25. На дренажной арматуре устанавливают заглушки.

Дренажная арматура трубопроводов группы А и жидких сероводородсодержащих сред должна соединяться с закрытой системой.

На трубопроводах, транспортирующих вещества указанных групп (см. таблицу 5.1) с рабочим давлением Pр < 4 МПа (40 кгс/см2), а также групп Б(в) независимо от давления, устанавливают одну единицу запорной арматуры и дренажную арматуру с заглушкой.

10.3.13. Трубопроводная арматура должна размещаться в местах, доступных для удобного и безопасного ее обслуживания и ремонта. Ручной привод арматуры должен располагаться на высоте не более 1,6 м от уровня пола помещения или площадки, с которой ведется управление. При использовании арматуры не реже одного раза в смену привод следует располагать на высоте не более 1,6 м.

10.3.14. На вводе трубопровода в производственные цехи, в технологические узлы и в установки, если максимально возможное рабочее давление технологической среды в трубопроводе превышает расчетное давление технологического оборудования, в которое ее направляют, необходимо предусматривать редуцирующее устройство (автоматическое для непрерывных процессов или ручное для периодических) с манометром и предохранительной арматурой на стороне низкого давления.

10.4. Опоры и подвески трубопроводов

10.4.1. Трубопроводы следует монтировать на опорах или подвесках. Расположение опор (неподвижных, скользящих, катковых, пружинных и т.п.), подвесок и расстояние между ними определяются проектом.

При отсутствии необходимых по нагрузкам и другим параметрам стандартных опор и подвесок должна быть разработана их конструкция.

Опоры и подвески следует располагать максимально близко к сосредоточенным нагрузкам, арматуре, фланцам, фасонным деталям и т.п.

10.4.2. Опоры и подвески рассчитывают на нагрузки от массы трубопровода с транспортируемой средой (или водой при гидроиспытании), изоляцией, футеровкой, льдом (если возможно обледенение), а также на нагрузки, возникающие при термическом расширении трубопровода.

10.4.3. Опоры и подвески располагают на расстоянии не менее 100 мм от сварных швов.

10.4.4. Для трубопроводов, транспортирующих вещества с отрицательной температурой, при необходимости исключения потерь холода следует применять опоры с теплоизолирующими прокладками.

10.4.5. При выборе материалов для опорных конструкций, подвесок, размещаемых вне помещений и в неотапливаемых помещениях, за расчетную температуру принимают среднюю температуру наиболее холодной пятидневки с обеспеченностью 0,92 по [8].

Материал элементов опор и подвесок, привариваемых к трубопроводу, должен соответствовать материалу трубопровода.

10.4.6. Для обеспечения проектного уклона трубопровода разрешается установка металлических подкладок, привариваемых к строительным конструкциям, под подушки опор.

10.4.7. Для трубопроводов, подверженных вибрации, рекомендуется применять опоры с хомутом или при соответствующем обосновании специальные демпфирующие опорные конструкции (вязкоупругие или сухого трения). Подвески для таких трубопроводов допускается предусматривать в качестве дополнительного способа крепления.

10.4.8. При выборе опор следует отдавать предпочтение "открытой" конструкции опоры для обеспечения возможности доступа при проведении толщинометрии.

10.4.9. Опоры под трубопроводы должны устанавливаться с соблюдением следующих требований:

а) они должны плотно прилегать к строительным конструкциям;

б) уклон трубопровода проверяют приборами или специальными приспособлениями (нивелиром, гидростатическим уровнем и др.);

в) подвижные опоры и их детали (верхние части опор, ролики, шарики) должны устанавливаться с учетом теплового удлинения каждого участка трубопровода, для чего опоры и их детали необходимо смещать по оси опорной поверхности в сторону, противоположную удлинению;

г) тяги подвесок трубопроводов, не испытывающих тепловых удлинений, должны быть установлены отвесно; тяги подвесок трубопроводов, испытывающих тепловые удлинения, должны устанавливаться с наклоном в сторону, противоположную удлинению;

д) пружины опор и подвесок должны быть затянуты в соответствии с указаниями в проекте; на время монтажа и гидравлического испытания трубопроводов пружины разгружают распорными приспособлениями;

е) опоры, устанавливаемые на дне лотков и каналов, не должны препятствовать свободному стоку воды по дну лотка или канала.

10.4.10. При необходимости уменьшения усилий от трения следует устанавливать специальные конструкции опор, в том числе шариковые и катковые.

Катковые и шариковые опоры не допускается применять при прокладке трубопроводов в каналах.

10.4.11. Подвижные и неподвижные опоры трубопроводов с сероводородсодержащими средами должны применяться, как правило, хомутовые. Применение приварных к трубопроводу деталей опор без последующей термообработки мест приварки к трубопроводу не допускается.

10.5. Дополнительные требования к устройству трубопроводов при комплектно-блочном методе монтажа

Проектирование и изготовление трубопроводов, входящих в состав поставочных блоков, должны соответствовать требованиям настоящего стандарта и ТУ на проектирование и изготовление трубопроводных блоков.

10.6. Компенсация температурных деформаций трубопроводов

10.6.1. Температурные расширения следует компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией на трубопроводах устанавливают компенсаторы и компенсирующие устройства.

В тех случаях когда проектом предусматривается продувка паром или горячей водой, компенсирующая способность трубопроводов должна быть рассчитана на эти условия.

10.6.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах со средами групп А и Б, для группы среды В их допускается применять в технически обоснованных случаях.

Не допускается установка линзовых компенсаторов на трубопроводах с высокой коррозионной активностью.

10.6.3. П-образные компенсаторы следует применять для технологических трубопроводов всех категорий. Их изготавливают либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

10.6.4. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных прямошовных труб. Применение сварных отводов для изготовления П-образных компенсаторов допускается в соответствии с указаниями 6.4.4.

10.6.5. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не допускается, а электросварные со спиральным швом трубы следует применять только для прямых участков компенсаторов.

10.6.6. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз, с соответствующим дренажным устройством в низшей точке и воздушниками.

10.6.7. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

10.6.8. В условиях стесненной компоновки эффективным способом компенсации температурных расширений является использование компенсаторов и компенсирующих устройств на базе гибкого элемента сильфона. Их применение позволяет воспринимать значительные линейные (вдоль оси трубы), угловые и боковые перемещения трубопроводов. При этом необходимо строго соблюдать рекомендации предприятий-изготовителей по их установке на трубопроводе: разбивка на отдельные компенсируемые участки, размещение неподвижных и направляющих опор. При отклонении от этих правил нормальная работа компенсаторов устройств не гарантируется.

10.6.9. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготавливают из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры.

10.6.10. При монтаже трубопроводов компенсирующие устройства должны быть предварительно растянуты или сжаты. Величина предварительной растяжки (сжатия) компенсирующего устройства указывается в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

10.6.11. Качество компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

10.6.12. При установке компенсатора в паспорт трубопровода вносят следующие данные:

- техническую характеристику, завод-изготовитель и год изготовления компенсатора;

- расстояние между неподвижными опорами, необходимую компенсацию, величину предварительного растяжения (сжатия);

- температуру окружающего воздуха при монтаже компенсатора и дату.

10.7. Требования к снижению вибрации трубопроводов

10.7.1. Вибрацию трубопроводов нормируют по амплитуде виброперемещений в зависимости от частоты вибрации.

Различают следующие уровни вибрации:

1) расчетный при проектировании;

2) допускаемый при эксплуатации;

3) требующий исправления, реконструкции системы;

4) уровень появления аварийных ситуаций.

Соответственно по уровням: 1 и 2 - удовлетворительное состояние трубопроводов, 2 и 3 - допускаемое значение, необходим контроль вибрации; 3 и 4 - необходим повышенный контроль, необходимо исправление, реконструкция; выше 4 - экстренное исправление.

В таблицах В.2 - В.10 Приложения В даны дискретные значения допускаемых значений амплитуд виброперемещений трубопроводов для фиксированных частот при обследовании и мониторинге компрессоров, насосов, фундаментов, подшипников и т.п.

При мониторинге вибросостояния трубопроводов необходимо иметь также информацию об уровнях вибрации компрессора, насоса, фундаментов и т.д. Нормативные значения допускаемых уровней вибрации следует принимать согласно нормативным документам.

При совпадении частоты пульсаций потока f с собственной частотой колебаний трубопровода f0 возникает условие резонанса. Это приводит к росту амплитуды колебаний.

Резонансная зона имеет определенную ширину, при которой амплитуда может сохранять значительную величину. Условия отстройки см. формулы (2) и (3).

Причиной повышенного уровня вибраций трубопровода может быть совпадение собственных частот колебаний самого трубопровода с частотами возмущающих гармоник пульсаций потока.

Необходимо в первую очередь устранить резонансные колебания пульсирующего потока и отстроить от возможного совпадения резонансов потока и механической системы.

Интенсивность колебаний давления принято характеризовать степенью неравномерности давления [15] согласно рисунку 10.2.

 

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах, (5)

 

где pmax, Pmin, pср - максимальное, минимальное и среднее давления;

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах - максимальная амплитуда давления газа.

 

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах

 

Рисунок 10.2. Зависимость допустимой степени неравномерности

давления ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах от давления в газопроводах:

1 - допустимые значения ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах для всасывающих трубопроводов;

1 и 2 - определяют границы области ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах для межступенчатых

трубопроводов компрессоров;

3 - допустимая степень неравномерности давления ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах

для нагнетательных трубопроводов

 

Допустимая степень неравномерности давления (прямая 3):

 

ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах. (6)

 

Для разветвленных трубопроводов принимают следующие значения ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах:

1% - для трубопроводов на низких бетонных опорах;

0,7% - на кронштейнах, укрепленных в стенах зданий, при давлении до 2,5 МПа (25 кгс/см2);

0,5% - на кронштейнах, укрепленных в стенах зданий, при давлении свыше 2,5 МПа (25 кгс/см2);

0,3% - для трубопроводов контрольно-измерительных приборов.

Пульсационные составляющие при движении двухфазных потоков оценивают по [15].

10.7.2. Способы отстройки системы от резонансных колебаний газа:

- изменение длин и диаметров участков трубопроводной системы, если это допускается компоновкой системы;

- изменение температуры и давления нагнетания компрессора, если это возможно по технологии процесса;

- установка диафрагм для рассеивания энергии колебаний газа и изменения амплитудно-частотного спектра газа в трубопроводной системе. Ориентировочно диаметр расточки диафрагм должен быть равен примерно половине внутреннего диаметра трубы;

- установка буферных емкостей, уменьшающая амплитуды пульсации давления за счет рассеивания энергии колебания газа и изменяющая спектр собственных частот колебаний. Буферную емкость предпочтительно устанавливать непосредственно у источника возбуждения колебаний (у цилиндра компрессора). На несколько цилиндров одной ступени целесообразно устанавливать общую емкость.

Роль буферных емкостей могут играть технологические аппараты (масловлагоотделители, сепараторы, теплообменники и др.);

- установка диафрагм на входе в емкость или выходе из емкости. При этом размеры емкости могут быть уменьшены примерно на 30% по сравнению с емкостью без диафрагмы;

- установка акустического фильтра в тех случаях, когда возникает необходимость в значительном снижении колебаний. Акустический фильтр характеризуется четким дискретным спектром полос пропускания и гашения частот колебаний газа.

10.7.3. Спектр собственных частот механической системы зависит от инерционно-жесткостных характеристик и условий закрепления. Такими параметрами являются:

- число участков, расположенных между опорами, их конфигурация;

- наличие сосредоточенных масс и их величина;

- условия опирания;

- упругие опоры и их характеристики жесткости;

- инерционно-жесткостные параметры участков.

а) Сосредоточенные массы увеличивают инерционные характеристики и снижают значения собственных частот. Понижение значения собственной частоты способом включения дополнительной массы может быть эффективным при величине массы, соизмеримой с массой участка. Однако сосредоточенные массы увеличивают жесткость системы.

Точный ответ о влиянии масс в каждом конкретном случае может быть получен только расчетом всей системы в целом.

б) Собственные частоты трубопровода зависят от условий закрепления его концевых и промежуточных участков.

При ограниченных возможностях варьирования длины пролета отстройка системы от резонанса достигается выбором типа опор и подбором их жесткости. Изменение расположения сосредоточенных масс задается расчетчиком. При их отсутствии специально вводить сосредоточенные дополнительные массы для изменения спектра частот следует только при невозможности применения других способов отстройки от резонанса.

в) Изменение геометрии системы. Необходимо изменить геометрию системы, максимально спрямив трассу, по возможности избегая лишних поворотов. При этом способе необходимо проведение поверочных расчетов трубопровода на прочность и жесткость.

г) Изменение инерционно-жесткостных параметров трубопровода варьируется диаметром трубопровода.

д) Корректировку трубопроводной системы для устранения механического резонанса проводят по каждому механизму возбуждения колебаний не менее чем по пяти гармоникам и по числу собственных частот колебаний системы, задаваемому расчетчиком.

10.7.4. Для анализа реальных значений пульсации давления в трубопроводных системах устанавливают датчики пульсации. Требования к посадочным местам для датчиков пульсации давления на трубопроводах поршневых компрессоров определяют в соответствии с НД.

10.8. Тепловая изоляция, обогрев

10.8.1. Необходимость применения тепловой изоляции должна определяться в каждом конкретном случае в зависимости от свойств транспортируемых веществ, места и способа прокладки трубопровода, требований технологического процесса и требований безопасности труда и взрывопожаробезопасности.

10.8.2. Тепловой изоляции трубопроводы подлежат в следующих случаях:

- при необходимости обеспечения требований технологического процесса (ограничение тепло- или холодопотерь, в том числе при остановке перекачки или отсутствии течения продукта, для сохранения или ограничения изменения температуры, предотвращения конденсации или вскипания продукта, образования ледяных, гидратных или иных пробок, нежелательного повышения вязкости продукта и т.п.);

- для исключения конденсации влаги на внутренней поверхности трубопровода, транспортирующего газообразный продукт, компоненты которого при растворении в конденсате могут привести к образованию агрессивных продуктов (ограничение температуры на внутренней поверхности трубы);

- по требованиям техники безопасности (ограничение температуры на поверхности теплоизолирующей конструкции в зависимости от местоположения трубопровода и свойств транспортируемого продукта в соответствии с требованиями действующих НД);

- при необходимости избежать неэкономичности потерь тепла или холода (ограничение плотности теплового потока);

- для исключения конденсации влаги из окружающего воздуха в помещениях, а в необходимых случаях - и на открытом воздухе, на трубопроводах с отрицательной температурой продукта (ограничение температуры на поверхности теплоизоляционной конструкции);

- при необходимости обеспечения нормальных температурных условий в помещении (ограничение общего теплового потока).

Тепловая изоляция одновременно может также выполнять функции огнезащиты и защиты от шума.

Для низкотемпературных (криогенных) трубопроводов может применяться вакуумная (экранно-вакуумная) тепловая изоляция.

В обоснованных случаях теплоизоляция трубопроводов может заменяться ограждающими конструкциями.

10.8.3. Тепловая изоляция трубопроводов должна соответствовать требованиям действующих нормативных документов. Расчет толщины тепловой изоляции выполняют по методикам, изложенным в НД.

Работы по тепловой изоляции должны выполняться в соответствии с действующими нормами и правилами производства работ и с учетом требований фирмы - производителя тепловой изоляции.

10.8.4. В теплоизоляционных конструкциях трубопровода, как правило, предусматривают следующие элементы:

- основной теплоизолирующий слой;

- армирующие и крепежные детали;

- защитно-покровный слой (защитное покрытие).

При отрицательных рабочих температурах среды проектом тепловой изоляции должны предусматриваться тщательное уплотнение всех мест соединений отдельных элементов и герметизация швов при установке сборных теплоизоляционных конструкций.

10.8.5. Для арматуры с разъемным способом присоединения, фланцевых соединений, компенсаторов, а также в местах измерения и проверки состояния трубопроводов должны предусматриваться съемные теплоизоляционные конструкции или иные возможности быстрого доступа к поверхности изолируемого объекта.

10.8.6. Опоры, фланцы, арматура и фитинги теплоизолированных трубопроводов должны иметь достаточную теплоизоляцию, сводящую к минимуму тепловые потери от этих элементов.

10.8.7. Соответствие материалов теплоизоляционного и покровного слоев в составе теплоизоляционной конструкции требованиям к качеству продукции, санитарно-гигиеническим требованиям и требованиям пожарной безопасности должно быть подтверждено соответствующими сертификатами или результатами испытаний.

10.8.8. Для трубопроводов, транспортирующих сильные окислители, не допускается применять тепловую изоляцию, содержащую органические вещества.

10.8.9. Для трубопроводов, подверженных ударным нагрузкам и вибрации, не следует применять порошкообразные теплоизоляционные материалы, минеральную вату и вату из непрерывного стеклянного волокна. Следует применять теплоизоляционные изделия на основе базальтового супертонкого или асбестового волокна или иные материалы, вибростойкость которых в условиях эксплуатации подтверждена результатами испытаний.

10.8.10. В случае необходимости поддержания требуемой технологической температуры по всей длине протяженного трубопровода либо недопущения падения (или роста) температуры ниже (выше) допустимой на отдельных участках трубопровода при остановке перекачки или отсутствии течения продукта трубопровод или его отдельные участки наряду с тепловой изоляцией должны быть снабжены системой обогрева (охлаждения). Система обогрева (охлаждения) совместно с тепловой изоляцией может использоваться также и в других случаях, перечисленных в 10.8.2.

10.8.11. Система обогрева (охлаждения) может быть выполнена:

- в виде трубчатых спутников, по которым прокачивается теплоноситель;

- в виде резистивных распределенных электронагревателей (система электрообогрева).

В необходимых случаях может использоваться конструкция с обогревающей рубашкой.

Необходимость системы обогрева (охлаждения), удельная мощность, коэффициент запаса и конструктивное исполнение определяются проектом на основании технических требований заказчика, с учетом технологического процесса функционирования трубопровода и условий окружающей среды.

В случае использования системы обогрева (охлаждения) тепловая изоляция должна закрывать как сам трубопровод, так и нагревательные (охлаждающие) элементы системы обогрева (охлаждения).

10.8.12. Необходимость обогревающих (либо охлаждающих) спутников, выбор и параметры теплоносителя, диаметры спутников и толщина теплоизоляции определяются проектом по результатам расчетов по методикам, изложенным в соответствующих нормативно-методических документах НД.

При расчете толщины теплоизоляции трубопровода с обогревающими спутниками по требованиям техники безопасности должно учитываться возможное повышение температуры на поверхности теплоизоляционной конструкции в зоне примыкания теплоизоляции к обогревающему спутнику.

10.8.13. Крепление трубопроводов обогрева к технологическому трубопроводу должно обеспечивать свободную компенсацию тепловых удлинений трубопроводов.

10.8.14. Системы резистивного распределенного обогрева (электрообогрев) должны обеспечивать наибольшую точность поддержания заданной температуры, оптимальный расход энергии и получение необходимого объема информации как о системе обогрева, так и о работе обогреваемого трубопровода.

Расчеты и проектирование систем резистивного обогрева должны выполняться в соответствии с действующими НД, в том числе в области взрывопожаробезопасности. Методики расчета систем резистивного обогрева изложены в соответствующих нормативно-методических документах, например [16], [17].

10.8.15. Монтаж тепловой изоляции трубопроводов осуществляют после испытания их на прочность и плотность и после устранения всех обнаруженных при этом дефектов.

Обогревающие или охлаждающие спутники также должны быть испытаны до нанесения тепловой изоляции.

Системы распределенного резистивного электрообогрева должны быть подвергнуты необходимым электрическим испытаниям как перед монтажом тепловой изоляции, так и после монтажа.

При монтаже спутников особое внимание должно быть обращено на отсутствие гидравлических "мешков" и правильную схему дренажа во всех низших точках.

10.9. Защита от коррозии и окраска трубопроводов

10.9.1. При транспортировке агрессивных веществ защиту от коррозии внутренней поверхности стальных трубопроводов следует обеспечивать с учетом химических и физических свойств веществ, конструкции и материалов элементов трубопроводов, условий эксплуатации и других факторов.

10.9.2. Вид и систему защиты от коррозии наружной поверхности трубопроводов выбирают в зависимости от способа и условий их прокладки, характера и степени коррозионной активности внешней среды, степени опасности электрокоррозии, свойств и параметров транспортируемых веществ в соответствии с требованиями НД.

10.9.3. В зависимости от степени агрессивности воздействия окружающей среды защиту от коррозии наружной поверхности надземных трубопроводов следует осуществлять с использованием металлических и неметаллических защитных покрытий в соответствии с требованиями [18] и НД.

10.9.4. Для защиты трубопроводов от подземной коррозии в проекте предусматриваются решения по обеспечению их надежной эксплуатации.

10.9.5. Решение о необходимости электрохимической защиты принимается в соответствии с требованиями НД на основании коррозионных исследований, выполняемых с целью выявления на участках прокладки трубопроводов опасности почвенной коррозии или коррозии блуждающими токами.

10.9.6. Систему электрохимической защиты (катодной, протекторной, дренажной) необходимо проектировать в соответствии с требованиями НД.

10.9.7. При бесканальной прокладке подземных трубопроводов средства защиты от почвенной коррозии и коррозии, вызываемой блуждающими токами, следует проектировать для трубопроводов без тепловой изоляции.

10.9.8. Трубопроводы, транспортирующие вещества с температурой ниже плюс 20 °C и подлежащие тепловой изоляции, следует защищать от коррозии как трубопроводы без тепловой изоляции.

10.9.9. При электрохимической защите трубопроводов следует предусматривать изолирующие фланцевые соединения (ИФС). Размещают ИФС согласно НД.

10.9.10. Для измерения электропотенциалов допускается использовать отключающие устройства, конденсатосборники и другое оборудование и сооружения.

10.9.11. При проектировании мероприятий по антикоррозионной защите технологических трубопроводов конструктивные решения должны обеспечивать доступность осмотра и восстановление антикоррозионных покрытий.

10.9.12. Опознавательную окраску трубопроводов следует выполнять в соответствии со стандартами и НД.

TOC