ГОСТ Р 55567-2013. Национальный стандарт Российской Федерации. Порядок организации и ведения инженерно-технических исследований на объектах культурного наследия. Памятники истории и культуры. Общие требования
7 Детальное обследование технического состояния конструкций
7.1 Каменные конструкции
7.1.1 При обследовании каменных конструкций устанавливаются: тип конструкции, материалы и тип кладки, состояние и прочностные характеристики, размеры камня и толщина швов, наличие и характер деформаций и повреждений.
7.1.2 Состояние наружных слоев кладки может определяться по результатам визуального обследования с обмером дефектов и повреждений. Для определения состояния внутренних слоев кладки толщиной 0,7 м и более рекомендуется использовать преимущественно неразрушающие методы (геофизические методы, зондирование с применением приборов типа эндоскоп и т.п.).
7.1.3 Для оценки прочностных характеристик кладки объектов преимущественно используются неразрушающие методы контроля с применением приборов, основанных на методе упругого отскока по ГОСТ 24332 или других, специализированных и тарированных для определения прочностных характеристик камня и раствора. Уточнение корреляционной зависимости между показателями приборов неразрушающего контроля и прочностными характеристиками материалов кладки допускается осуществлять путем сравнения средних показателей указанных характеристик, полученных методом неразрушающего контроля и лабораторными испытаниями не менее трех образцов (кернов) для каждого типа кладки. Лабораторные испытания производятся в соответствии с требованиями ГОСТ 8462, ГОСТ 5802.
7.1.4 Участки кладки, имеющие наружные повреждения, не должны использоваться для проведения испытаний. Расчетное сопротивление в каждой точке определяется в соответствии с [11]. Расчетное сопротивление каменной кладки рассматриваемого типа принимается по среднему значению, определенному с вероятностью 0,95.
Рекомендуется выполнять неразрушающее испытание не менее чем в одной точке на каждые 10 - 15 м2 (в зависимости от однородности кладки), при этом осуществлять не менее пяти проб камня и растворов в каждой точке.
7.1.5 Установление наличия металлических элементов внутри кладки (в т.ч. внутренних связей) следует выполнять электромагнитным, электроакустическим зондированием или радиационным методом.
7.2 Металлические конструкции
7.2.1 При обследовании металлических конструкций устанавливаются: тип конструкций, их конструктивные схемы и типы соединений элементов; геометрические размеры конструкций и сечения их элементов; наличие и характер деформаций и повреждений конструкций, элементов и узлов соединений; физико-механические характеристики металла; технологические особенности изготовления конструкций.
7.2.2 Обследования металлических конструкций необходимо выполнять в соответствии с требованиями и рекомендациями [8], [12], [13]. При этом следует учитывать, что металлические конструкции исторических зданий и сооружений зачастую выполнены с применением чугуна, кованого железа (до конца XIX в.), а также металлопроката из пудлинговых сталей, выполненного во второй половине XIX - начале XX вв.
7.2.3 Для выявления параметров, дефектов и повреждений осуществляется осмотр и обмеры конструкций, включая узлы соединений элементов.
7.2.4 Для определения степени коррозионного повреждения металлоконструкций выполняются локальные расчистки поверхностей элементов, при этом следует учитывать, что наиболее подвержены коррозии элементы металлоконструкций в местах их контакта с кладкой или иными материалами. Определение вида коррозии следует выполнять в соответствии с ГОСТ 5272.
7.2.5 Контроль состояния заклепок и болтов нормальной и повышенной точности выполняется путем простукивания молотком массой 0,2 - 0,5 кг, зазоры между листами пакета проверяются с помощью щупов толщиной 0,1 - 0,5 мм.
7.2.6 Выявление мелких трещин различного происхождения может выполняться путем расчистки и протравливания поверхности металла. Для выявления скрытых дефектов в особо ответственных узлах следует использовать физические методы контроля.
7.2.7 Определение механических характеристик металла конструкций объекта, как правило, затруднено в связи со сложностью отбора проб. Определение прочностных характеристик металла изготовления середины XIX - начала XX вв. следует выполнять в соответствии с требованиями [8], [12]. В случае невозможности отбора проб и проведения испытаний для металла, изготовленного ранее середины XIX в., допускается принимать расчетное сопротивление на растяжение, сжатие и изгиб стального проката 165 МПа, кованого железа - 120 МПа, расчетное сопротивление чугуна на сжатие - 120 МПа.
7.2.8 В случае возможности отбора проб металла в соответствии с ГОСТ 7564 без снижения несущей способности конструкции осуществляется изготовление и испытание образцов с целью определения их физико-механических характеристик по ГОСТ 1497 и, при необходимости, химического состава по ГОСТ 18895, ГОСТ 22536.0 и ГОСТ 27809.
7.2.9 Определение расчетных сопротивлений производится в соответствии с требованиями [8], [12], [13].
7.2.10 Оценка возможности электросварки стали производится в соответствии с [8] по результатам химического анализа.
7.2.11 Определение усилий в элементах воздушных связей рекомендуется проводить путем оценки частоты собственных колебаний.
7.3 Деревянные конструкции
7.3.1 При обследовании деревянных конструкций требуется установить: породу дерева, тип конструкций, их конструктивные схемы и типы соединений элементов, геометрические размеры и сечения элементов, условия работы, наличие и характер деформаций и повреждений, элементов и узлов соединений; влажность и прочностные характеристики древесины [14].
7.3.2 Определение условий работы конструкции производится на основании анализа ТВР, при котором она эксплуатируется. При этом выявляются участки древесины с недопустимыми атмосферными, конденсационными и техническими увлажнениями, особенно в узлах опирания деревянных элементов на фундаменты, каменные стены и т.п.
7.3.3 Состояние конструкций определяется в зависимости от наличия видимых повреждений (разрушения, потеря устойчивости, прогибы, раскрытия трещин и др.), биологического, огневого и коррозионного поражения, влажности, определяемой в соответствии с ГОСТ 16483.7, наличия защитных пропиток.
7.3.4 Для оценки состояния узловых и стыковых соединений следует определять конструктивную схему соединения (в т.ч. имеющиеся эксцентриситеты), положения и параметры соединительных элементов (гвоздей, нагелей, болтов, накладок и т.п.), состояние соединений (плотность прилегания, наличие сколов, смятий и т.п.).
7.3.5 Наличие биологических повреждений следует определять по присутствию характерных признаков: плодовые тела на поверхности элементов, изменение цвета древесины, глухой звук при простукивании, разрыхления древесины, совокупность ходов и буровой муки.
7.3.6 Расчетное сопротивление древесины конструкций, не имеющих биологических повреждений, принимается как для новой древесины в соответствии с [14]; если конструкция старше 100 лет, древесину следует принимать не выше второго сорта. При наличии поверхностного повреждения древесины гнилью размеры расчетного сечения уменьшаются на толщину пораженного слоя и, если среда влажная и древесина повреждена мицелием, при расчете конструкций следует уменьшать расчетные сопротивления древесины путем введения коэффициента 0,8 [14]. При необходимости и возможности отбора проб, пределы прочности древесины при сжатии вдоль и поперек волокон, изгибе, местном смятии и скалывании могут определяться лабораторным путем в соответствии с требованиями ГОСТ 16483.2, ГОСТ 16483.3, ГОСТ 16483.12, ГОСТ 16483.5, ГОСТ 16483.10 и ГОСТ 16483.11.
7.3.7 В связи с ограниченным количеством вскрытий, выполняемых при проведении обследования объектов, допускается:
- определять конструктивное выполнение и оценку состояния скрытых конструкций по внешним признакам с использованием приборов типа эндоскоп, оснащенных миниатюрной телекамерой;
- выявлять наличие и размеры биохимических повреждений путем сверления отверстий и анализа состояния стружки.
7.4 Бетонные и железобетонные конструкции
7.4.1 При обследовании бетонных и железобетонных конструкций устанавливаются: тип конструкций, их конструктивные схемы и типы соединений элементов, условия работы, геометрические размеры конструкций и сечения их элементов, схемы армирования, наличие и характер деформаций элементов и узлов соединений, влажность и прочностные характеристики материалов. Работы должны выполняться в соответствии с требованиями строительных норм и правил [8], [15], [16].
7.4.2 Оценка состояния конструкций по внешним признакам производится на основе определения наличия следующих дефектов: трещин и прогибов, отколов и разрушений, следов коррозии, отслоения защитного слоя, протечек и промасливания бетона, зон с неплотной рыхлой структурой бетона, выпучивания арматуры, следов огневого воздействия и др.
7.4.3 При детальном обследовании конструкций устанавливают состояние антикоррозионной защиты, глубину коррозии арматуры и карбонизации бетона, а также плотность, влажность, водопоглощение, водопроницаемость и пористость в соответствии с ГОСТ 12730.0.
7.4.4 Для определения диаметра и расположения арматурных стержней, а также толщины защитного слоя бетона рекомендуется применение преимущественно неразрушающих методов электромагнитного зондирования в соответствии с ГОСТ 22904, ГОСТ 17624, радиационным методом в соответствии с ГОСТ 17625, позволяющих установить все указанные параметры. Для уточнения полученных данных допускается выполнять локальные зондажи на глубину защитного слоя бетона.
7.4.5 Прочность бетона определяется преимущественно механическими методами неразрушающего контроля (по ГОСТ 22690) и ультразвуковым поверхностным прозвучиванием (по ГОСТ 17624). Оценка прочности бетона с помощью отбора и лабораторного испытания кернов выполняется в соответствии с действующими нормативными требованиями ГОСТ 28570. Ввиду невозможности отбора большого количества проб из конструкций объектов культурного наследия допускается уточнение корреляционной зависимости между показателями приборов неразрушающего контроля и прочностными характеристиками бетона путем сравнения средних значений показателей, полученных неразрушающими методами и лабораторными испытаниями (не менее трех образцов).
7.4.6 Количество испытаний, проводимых методами неразрушающего контроля, для каждого конструктивного элемента зависит от состояния бетона и вида конструкции и определяется программой исследований на основе стандартных методик. По результатам испытаний определяют условный класс бетона по прочности на сжатие с обеспеченностью 0,95 [8].
Рекомендуется выполнять испытания для плоскостных конструкций не менее чем в одной точке на каждые 3 - 5 м2 поверхности, для протяженных конструкций - не менее чем через 3 - 4 м по длине конструкций. При проведении испытаний в каждой точке должно быть выполнено не менее пяти проб.
7.4.7 При сплошной равномерной коррозии степень коррозии арматуры определяется по толщине слоя ржавчины, при язвенной - измерением глубины отдельных язв. По результатам замеров определяются остаточные сечения стержней.
7.4.8 Определение глубины карбонизации бетона производят в соответствии с ГОСТ 5382 по изменению величины водородного показателя pH по глубине скола бетона.
Определение плотности, влажности, водопоглощения, пористости и водопроницаемости следует производить по ГОСТ 12730.1 - ГОСТ 12730.5.
7.4.9 Для определения прочности арматуры из конструкций, при необходимости, вырезают образцы и испытывают в лабораторных условиях по ГОСТ 12004, при этом нормативные и расчетные сопротивления определяются согласно [8], [15].
7.4.10 Допускается ориентировочное определение прочности арматуры по рисунку профиля стержней и возрасту конструкций [8].
Расчетное сопротивление гладкой арматуры, возраст которой установить не удается в случае невозможности проведения ее испытания, следует принимать 155 МПа [8].
7.4.11 При обследовании конструкций, подвергшихся воздействию пожара, возможное снижение прочности бетона и арматуры определяется в соответствии с требованиями [8].
7.5 Поверочные расчеты конструкций
7.5.1 Определение несущей способности конструкций должно проводиться с учетом требований [17] для определения нагрузок и воздействий, а также требований строительных норм и правил при расчете грунтов основания [4], элементов каменных, металлических, деревянных и железобетонных конструкций [11], [12], [14], [15].
7.5.2 Поверочные расчеты проводятся с учетом уровня ответственности объекта, определяемого законодательством [3].
7.5.3 Геометрические параметры конструкций, нагрузки, прочностные характеристики материалов принимаются по результатам выполненных обследований, при этом в обязательном порядке необходим учет выявленных дефектов и повреждений, влияющих на несущую способность конструкций.
7.5.4 Расчет может носить локальный характер для определения несущей способности отдельных конструктивных элементов или общий для оценки напряженно-деформированного состояния конструкций объекта в целом.
7.5.5 Расчеты отдельных конструктивных элементов (простенков, столбов, балок, арок, сводов и т.п.) выполняются в соответствии с требованиями строительных норм и правил [15], [16], [17] в объемах, определенных программой обследования.
7.5.6 Расчет зданий и сооружений в целом как единой системы с учетом взаимодействия с грунтом основания выполняется для оценки общего состояния объекта в тех случаях, когда локальные расчеты не позволяют с достаточной достоверностью оценить напряженно-деформированное состояние и общую устойчивость объекта, а также определить причины возникновения повреждений.
7.6 Диагностика биологических повреждений материалов конструкций
7.6.1 Микробиологические, микологические, альгологические, лихенологические и аэромикробиологические исследования, как правило, производятся совместно с изучением влажностного режима конструкций и воздушной среды. Следует учитывать, что развитие микроорганизмов на наружных стенах и в неотапливаемых памятниках имеет сезонную динамику, связанную с колебаниями влажностного режима.
7.6.2 Натурное обследование предполагает:
- выявление и фиксацию участков строительных конструкций и материалов с видимыми повреждениями, возникновение которых может быть связано с развитием микроорганизмов, водорослей, лишайников, высших растений или совместного действия с другими факторами;
- инструментальные исследования развития микроорганизмов непосредственно на поверхности материалов конструкций (производятся при помощи стереоскопических и портативных микроскопов).
По результатам натурного обследования составляется схема отбора образцов для лабораторных исследований и картограмма биоповреждений.
7.6.3 Лабораторные исследования предполагают:
- микроскопические исследования отобранных образцов;
- посев на питательные среды и выделение культур микроорганизмов.
Рекомендации по составу лабораторных микробиологических исследований и применяемому оборудованию даны в Приложении Г.
7.6.4 По результатам выполненных работ составляется заключение с указанием диагностированных биологических повреждений и рекомендациями по предотвращению их дальнейшего возникновения и санации материалов конструкций.
7.7 Диагностика структурно-фазового состояния материалов
7.7.1 Основной целью диагностики структурно-фазового состояния материалов является определение вида повреждения материала вследствие происходивших физико-химических процессов и получение комплекса качественных и количественных характеристик, отражающих характер деструктивных процессов, происходящих в материалах, в объеме, необходимом для диагностики состояния, определения причин возникновения повреждений и разработки проекта реставрации объекта культурного наследия.
7.7.2 При исследовании материала требуется определять: степень, вид увлажнения, характер взаимодействия "материал-вода", фазовый и химический состав, степень и вид загрязнения, морфологию, микроструктурную, химическую и геохимическую неоднородность, дефекты структуры, ресурс долговечности.
7.7.3 Отбор образцов для материаловедческих исследований проводится после обследования состояния объекта, фотофиксации мест повреждений и составления ведомости дефектов. Образцы отбирают из всех поврежденных участков с поверхности и по толщине материала (для определения глубины поражения) в виде микрокернов. Для каждого вида повреждений образцы отбирают не менее чем из трех характерных участков: из части, пораженной коррозией, из части, не пораженной коррозией, и на участке между ними.
7.7.4 Методика проведения материаловедческих исследований в лаборатории включает следующие основные этапы:
- визуальную оценку общего состояния образца материала (под микроскопом), выбор однотипных и отличающихся по структуре участков для исследования проб;
- отбор и подготовку образцов для лабораторных исследований;
- выполнение физико-химических исследований.
Для диагностики возможно использовать следующие методы структурного физико-химического анализа:
- рентгеноспектральный микроанализ;
- электронная сканирующая микроскопия с разрешающей способностью 0,3 - 0,5 нанометров;
- дифференциально-термический анализ;
- кристаллографический анализ;
- инфракрасная спектроскопия;
- люминесцентный анализ.
7.7.5 Степень и вид увлажнения определяются на объекте с использованием влагомеров, а характер взаимодействия "материал-вода" - в лаборатории методами структурного физико-химического анализа. Подробное описание процессов исследований изложено в разделе 8.
7.7.6 Степень и вид загрязнения солями хлоридов - Cl, сульфатов - , нитратов -
рекомендуется определять на объекте с использованием специальных приборов и экспресс-методами для количественного и качественного анализа; содержание других загрязнителей в пробах материала - в лаборатории с использованием специальных приборов.
7.7.7 По результатам проведенных исследований составляется заключение, в котором указываются результаты приборных испытаний в виде распечаток таблиц и диаграмм с данными химического анализа, фотографиями микроструктуры, рентгенограммами, дериватограммами. В заключении даются рекомендации по санации поврежденных конструкций, выбору превентивных и корректирующих мероприятий и материалов для реставрационных работ, подобранных по показателям совместимости.
